DRAFT COPY ONLY

Resin Infusion/Liquid Moulding: Technology Advances in Past 35 Years

Dr. Scott W. Beckwith BTG Composites Inc. and SAMPE

Dr. Andrew George
Brigham Young University

IV SAMPE Brazil Congress 2016 November 8, 2016

HISTORICAL OVERVIEW

Plastic "Liquid Moulding" Processes Led to RTM & VARTM Methods

- Several "liquid moulding' processes were background to conventional RTM/VARTM:
 - RIM --- Reaction Injection moulding (and)
 Resin Injection moulding (NO fibre)
 - RRIM --- 'reinforced' RIM (Fibre added)
 - SRIM --- 'structural' RIM (MORE fibre added)
- Urethane resin technology (1940-1950) added technology
- RTM and VARTM processes grew from various aspects of these technologies

Resin Infusion Patent History

- RTM a grew out of urethane technology developed under the <u>Marco patents</u> in the 1940-1950 time period (pressure feed)
- VARTM grew out of combining "vacuum bag" technology in various 1960-present patent versions (vacuum infusion)
 - RFI grew out of McDonnell Douglas work in 1980's patents (vacuum infusion, separated materials/resin sheets)
 - SCRIMP [™] grew out of Seemann's patents in 1980's and early 1990's (vacuum infusion, flow media)

Major Developments – Last 15+ Years (Closed Mould, Markets)

- Lots of new infusion resins PE, VE, Epoxies
- More than existed in the early-mid 1980's
- Excellent high temperature resins (BMI, CE, PI)
- "Heavy areal weight" reinforcement materials
- Various process options (>30+)
- Available "flow media" materials (because of SCRIMP)
- Core materials with induced flow porosity (z-direction flow)
- High performance, complex structural preforms:
 - Higher fibre volume fractions
 - Z-direction reinforcements
 - Complex geometries

MATERIALS

Typical Resin Systems

Polyester	Ambient – 100	Commercial
Vinyl Ester	Ambient - 180	Commercial
Phenolic	140-200	Commercial
Epoxy	180-350	Commercial/Aerospace
Toughened Epoxy	250-350	Aerospace
Cyanate Ester	250-350	Aerospace
Bismaleimide	350-500	Aerospace
Polyimide	350-700	Aerospace
Phenylethynyl Terminated Imides (PETI)	>350	Aerospace

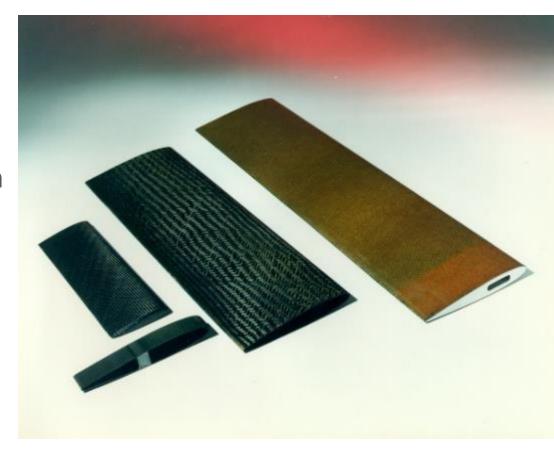
LIQUID MOULDING AND RESIN INFUSION PROCESSES

RTM/VARTM Processes Have

Numerous Variations Today

- Automotive industry utilizes RTM/VARTM liquid moulding (LM) processes
- Other common versions (<u>about 40-50</u>):
 - VARTM, VARI, VRTM, VIMP, VIP, VIM vacuum methods
 - TERTM, RARTM, CERTM internal expansion materials
 - CIRTM, MIRTM various injection/infusion methods
 - RLI, RFI liquid and film resin systems
 - SCRIMP, UVRTM flow media and UV systems
 - CARTM, RTM LITE flow media variations
 - ETC

Traditional RTM


The Key Parameter is Pressure

Resin Transfer moulding (RTM)

- Resin pressure fed into closed mould
- mould consists of two or more <u>rigid</u> sections
- Excellent dimensional control for part
- Often heated tools (steel, aluminum, Invar)
- Aerospace structures preference
- Pressures upwards of 500 psig (3.45 MPa)
- Higher fibre volumes (>55-65% V_f)

Earliest (1989) RTM Airfoil Structural Parts

- AS4 and IM7 type carbon fibre preforms
- Carbon fabric and braided preforms demonstrated
- Hexcel HBRF-315 toughened resin formulation
- Aerodynamic control surfaces for missile wings
- Moulded-in fittings, closed or open ends, and internal support structures

Combination of Materials in RTM Blade

- ATR-72 propeller blade
- Braided carbon and Aramid materials utilized
- One-part epoxy resin
- Aramid provides impact toughness
- Smooth aerodynamic surfaces

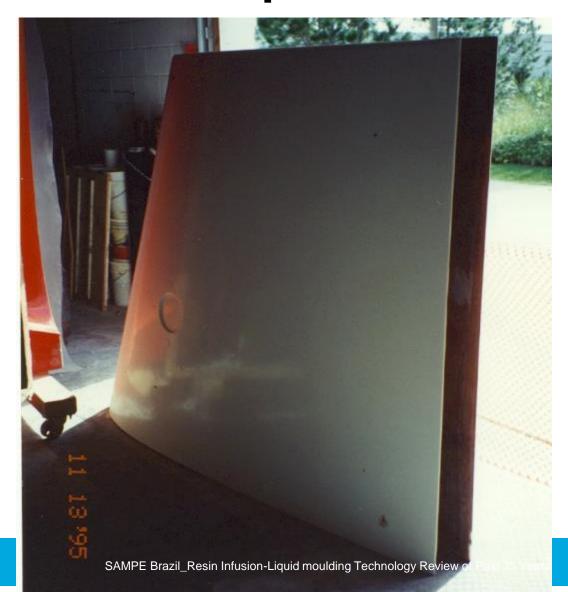

High Performance Racing Bicycle Wheels w/Hub Inserts

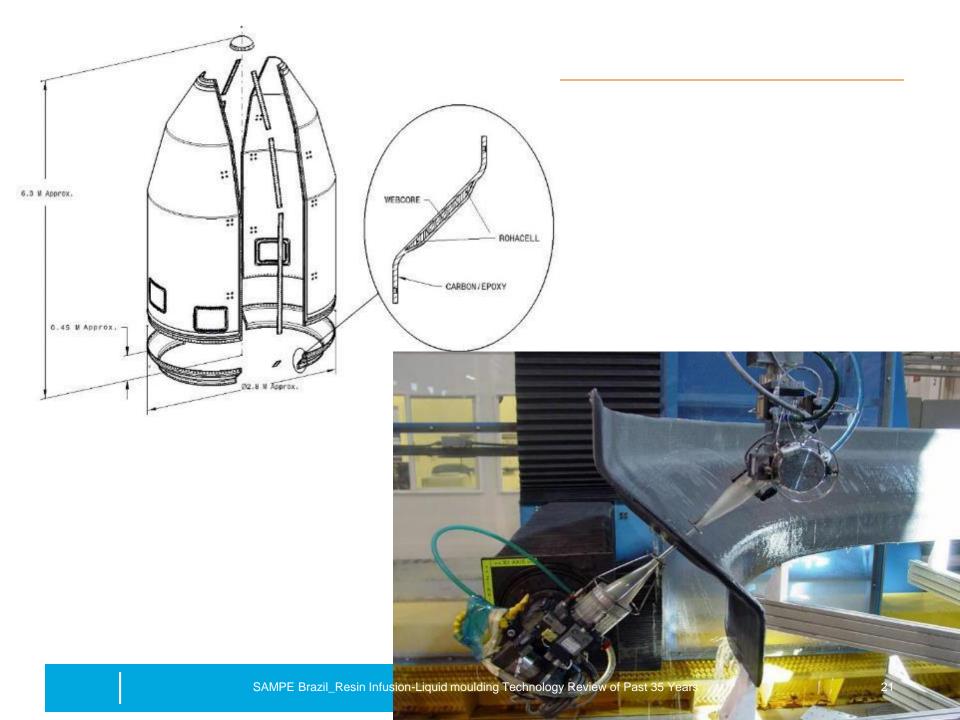
- RTM process used for racing bicycle wheels
- Carbon fibre preforms
- Epoxy resin RTM processing
- Internal foam core
- Moulded-in fittings

RTM Road Bike Frame Structure

- Carbon/epoxy RTM process
- Lightweight and modern design features
- Monocoque frame, forks, chain-stay
- Complex structure fits RTM process

Carbon Fibre RTM Projectile Sabot


Vacuum-Assisted RTM (VARTM)


The Key Parameter is Vacuum

Vacuum-Assisted RTM (VARTM)

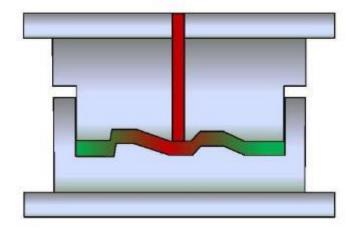
- Resin pulled in by vacuum (negative pressure) and pressure applied as well at some point in process
- Rigid tool on one side only (could be two sides like RTM)
- Flexible, bagging materials on outside (often)
- Tool surface control on one side only (or two sides if pressure significant)
- No additional pressure added later
- Fibre volumes more like 45-55% V_f
- SCRIMP™ actually a subset within VARTM

VARTM Multiple Port Injection Minesweeper Rudder

HP-RTM VERSIONS

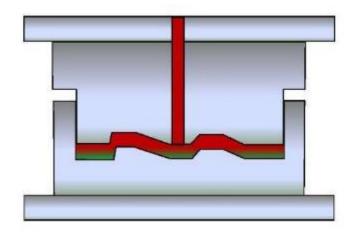
The Key Parameter is High Pressure

RTM Challenges – Leads to Using HP-RTM as Solution ...


Typical challenges and issues of the state of the art RTM process

- Typical injection pressure between 1 and 20 bar
 - → Higher pressure disturbs the fiber orientation in the preform
- Permeability of 3D fiber preform influences significantly the injection time
 - → Proper impregnation of complex shaped preforms is a challenge
- Required injection time does not allow the use of fast curing resin systems
 - → Typically long cycle times due to long injection and curing times
- Additional resin required to push trapped air out of the mold cavity
 - → Negative economical and ecological impact
- Probable solutions: High Pressure RTM processes

Direct Comparison (Two Versions)


High Pressure RTM Processes

High Pressure Injection Resin Transfer Moulding HP-IRTM

Impregnation of preforms in x- and y- direction

High Pressure Compression-Resin Transfer Moulding HP-CRTM

Impregnation of preforms in x-, y- and z- direction

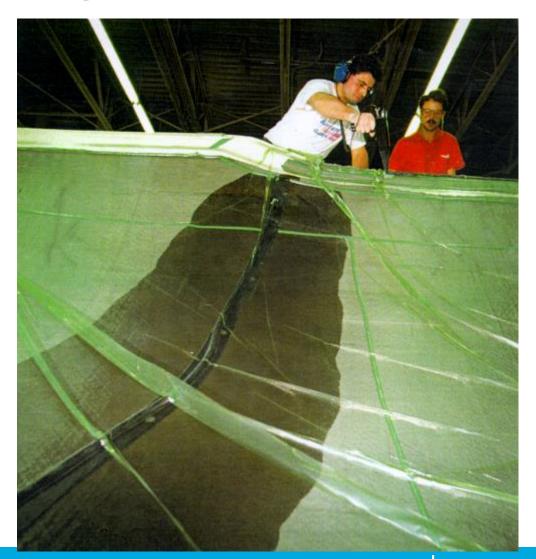
Preforming Operation BMW i8 Side Frame

BMW i8 HP-RTM Side-frame Moulded Part

Fully Cured Side-Frame Part Moved to Assembly

Integrated HP-RTM Process Line Equipment

SCRIMP

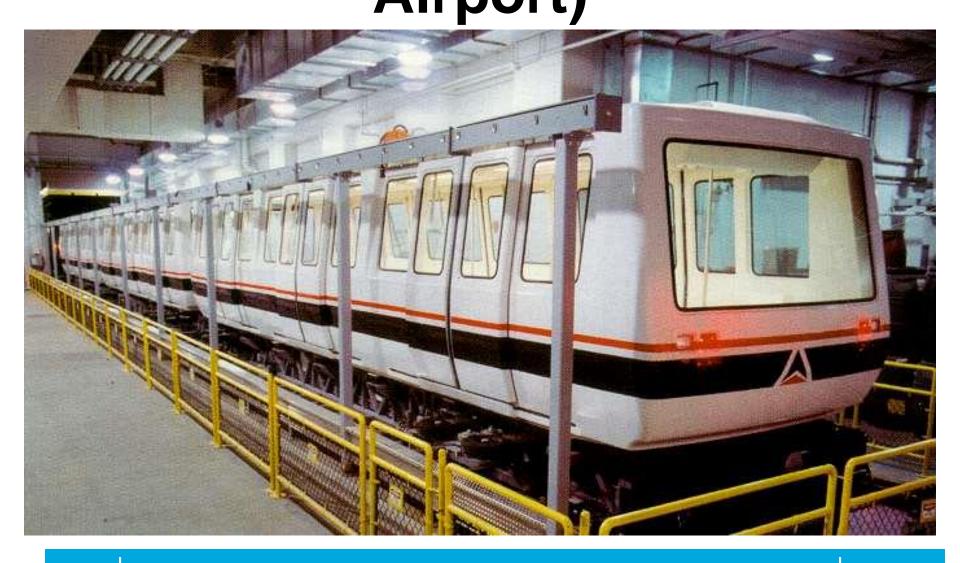

The Key Parameter is Flow Media

SCRIMP™ Process

- Developed, patented by Bill Seemann (1980's)
- Applicable primarily to <u>large</u> surface areal parts
- Incorporates <u>two</u> major features:
 - Lateral surface resin distribution via <u>open</u> <u>tubes</u>,
 - Porous "flow media" in form of netting or screen materials
- Most efficient for nominal thicknesses in range of 0.5- to 4-inch (12-100 mm) typically
- Fibre volumes often in 45-55% V_f

SCRIMP™ Requires Vacuum Bag Integrity

- Vacuum bag and "medium" integrity critical
- Resin infuses rapidly through "medium" distribution channel
- Resin next spreads out horizontally
- Infusion migrates through preform thickness


SCRIMP™ Infuses 64-ft Yacht Hull

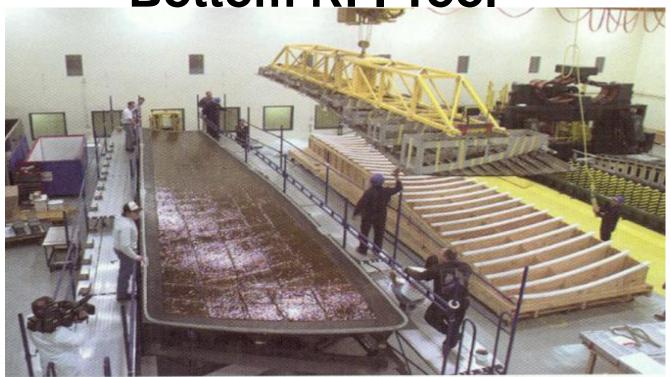
- SCRIMP™ process used on large area products
- Nine (9) injection regions processed at same time
- Resin infused from large catalyzed resin drums
- Process allows rapid preform infusion
- No interface "knitting" problems observed

People Movers (Atlanta, USA Airport)

Resin Film Infusion (RFI)

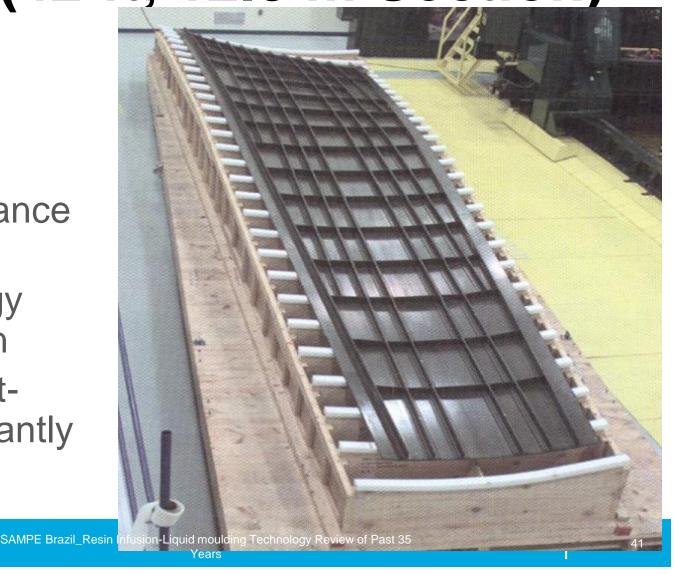
The Key Parameter is Prepreg Resin

Resin Film Infusion (RFI)


- Resin form very different prepreg resin <u>plates</u>
- Resin "plates" pre-loaded into rigid female tool cavity
- Complex fibre preforms loaded on top of resin plates
- Mould inserts, tooling pieces loaded into tool
- Flexible bagging installed over assembly
- Resin flows during heat-up and cure cycle through the "thickness"
- Fibre volumes typically 50-55% V_f

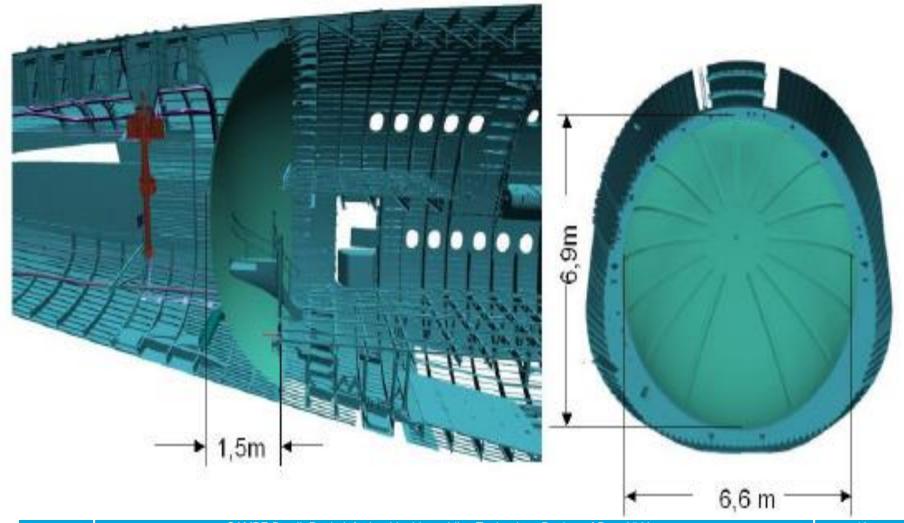
Complex Preforms Required for RFI

- AS4 carbon fibre preforms
- Cross-stiffened, stitched preform for commercial aircraft structures
- Provides complex structure
- Provide de-bulked preform
- Used in resin film infusion (RFI) process


Stitched Preform Lowered Into Bottom RFI Tool


- Bottom mould RFI tool contains:
 - Hexcel 3501-6 prepreg resin film plates installed
 - Stitched carbon preform placed <u>above</u> resin film (being lowered into mould)

Completed RFI Lower Wing Cover (42-ft, 12.8 m Section)


- 42-ft length
- 8-ft width
- Incorporates damage tolerance features
- RFI technology demonstration
- Reduces `partcount' significantly

RFI Boeing Wing Section (Close-up)

Airbus A-380 Aft Pressure Bulkhead

Completed A-380 Pressure

Bulkhead

SQRTM – <u>Same Qualified</u> Resin Transfer Moulding

Key Parameter is Using <u>SAME</u> Prepreg Resin for RTM Infusion

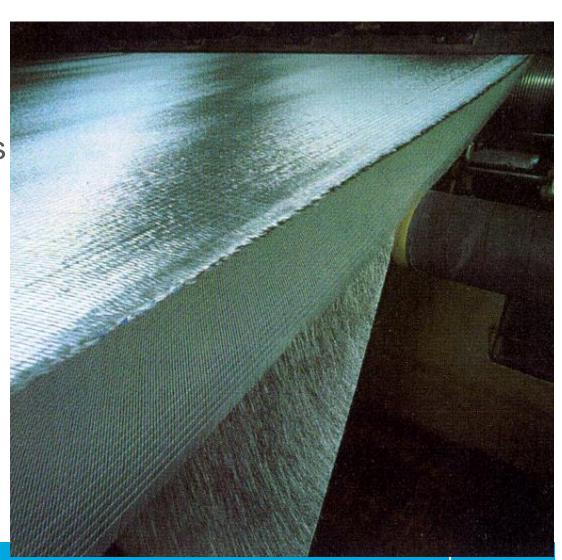
SQRTM Process Uses Prepregs

- Hard tooling is loaded with near-net shape prepreg materials in desired laminate configuration (angles, material stacking, etc.)
- mould is closed and sealed
- Additional <u>prepreg resin is injected along all</u> <u>sides of laminate</u>
- Purpose of "same prepreg resin infusion" is to prevent bleed-out of installed prepreg laminate resin system – not to add additional resin (hence – it acts as a "resin dam"

SQRTM Tooling Assembly w/Prepreg Materials

Assembled SQRTM Tooling Ready for Additional Resin Infusion

SQRTM Manufactured Composite Parts

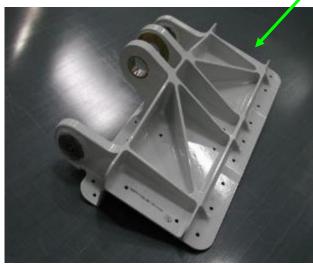

PREFORM TECHNOLOGIES

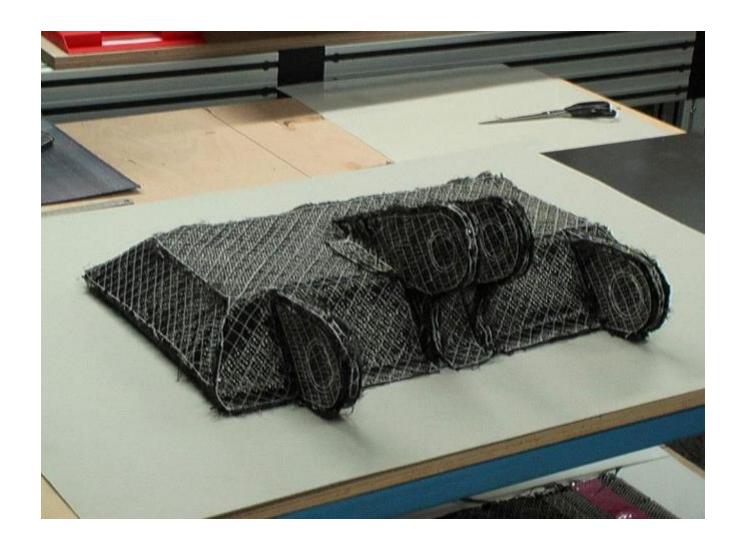
Utilization of "Fabric" Preforms

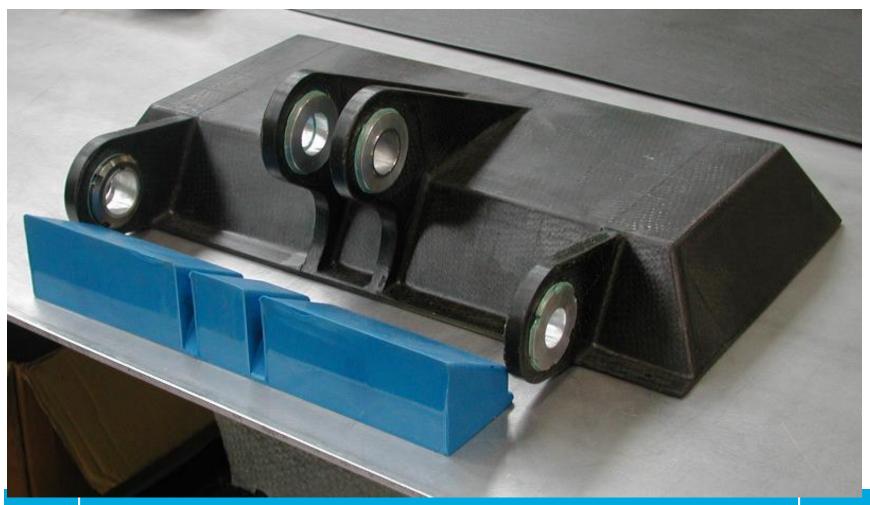
Fabric, Preform Type	Percent Industry Utilization (%)	
45-Deg, Biased Fabric	14	
Multi-Layer Materials	13	
Knitted, Stitched	9	
Twill Structures	6	
Harness Satin Structures (4HS, 5HS)	18	
Plain Weave	16	
Uni-Tape/Unidirectional	15	
Miscellaneous (Other)	10	

Knitted Fabric Material Example

- Continuous preforming process incorporates numerous lay-up options
- Continuous strand material (CSM)
- 0/90° plus continuous mat incorporated
- Knitted together (usually tackified)


P4 Glass Fibre Automotive Preform (P4-A is Carbon Fibre)


Existing Aluminium Fitting Was Expensive Machined Part Requiring Numerous



Complete Preform

Completed Center Fitting with Bearings

SUMMARY

Process Comparisons – Part 1

Process & Product Variables	RTM	VARTM	VIP	SCRIMP	RFI
Liquid Molding/Resin "Infusion" Method	Pressure (50-500 psi)	Vacuum (to 29 in Hg) <u>plus</u> Pressure	Vacuum (to 29 in Hg)	Vacuum (to 29 in Hg)	Prepreg Resin Plates
Tooling Approach	Rigid, 2 Sides plus Extensive Internal Tooling	1 Side Rigid, Bagging, possible Tooling Enclosure	1 Side Rigid, Bagging	1 Side Rigid, Bagging	Rigid, 1 Side, Tooling Inserts, Autoclave
Nominal Fiber Volume Levels, Vf (%)	55-65+	45-60+	45-55	45-55	50-55
Dominant Market	Aerospace	Aerospace & Commercial	Commercial	Commercial	Aerospace

Process Comparisons – Part 2

Process & Product Variables	HP-RTM	HP-CRTM	RTM LITE	SQRTM
Liquid Molding/Resin "Infusion" Method	Pressure (50-500 psi or much higher, faster)	Pressure (50-500 psi or much higher, faster), <u>Offset</u> to Allow Resin Flow	Vacuum (to 29 in Hg)	Prepreg Material <u>plus</u> Same Liquid Resin Infused
Tooling Approach	Rigid, 2 Sides Large Areas Possible	Rigid, 2 Sides Large Areas Possible	1 Side Rigid, 1 Side Thin Rigid Structure	Rigid, 2 Sides plus Extensive Internal Tooling
Nominal Fiber Volume Levels, Vf (%)	55-60+	55-60+	45-55	55-65
Dominant Market	Automotive	Automotive	Commercial	Aerospace

Numerous Advances Since Mid-1980's

- Significantly more "infusion resin families"
- Automotive developing "snap-cure" resins (60-150 seconds)
- Large number of new infusion processes
- Preforming techniques increased tremendously – arrival of much "heavier" materials for preforms
- Aerospace, Energy, Marine and Automotive markets drive technology

THANK YOU, QUESTIONS ???