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Abstract
In this work, the relation between the morphological structure and the linear viscoelasticity of graphene oxide (GO)-based
polystyrene nanocomposites below percolation threshold was investigated. The rheological properties were observed to change
upon addition of GO-2D particles at filler content below mechanical percolation threshold (0.06–0.3 %vol). In particular, the
nanocomposite systems showed a delayed long-range relaxation dynamic regardless particle concentration, when compared to
the neat polystyrene matrix. Moreover, little shift with regard to higher relaxation times of the full relaxation spectra of PS-GO
nanocomposite was observed. This is attributed to the presence of attractive-kind interfacial interaction between polymer chains
and GO-2D particles via π-π binding of benzyl rings, which strongly depends on GO sheets dispersion and exfoliation state. In
light of these observations, oscillatory shear rheologymeasurements were used as an indirect tool to establish how exfoliated GO-
2D particles were homogeneously dispersed in a low-polar polymer matrix.

Keywords 2D particles . Graphene oxide . Polymer nanocomposites . Linear viscoelasticity . Time-temperature superposition
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Introduction

After being successfully isolated in 2004 by Novoselov et al.
(Novoselov et al. 2004), graphene became one of the most
promising two-dimensional (2D) material, due to its unique
thermal, electrical, and mechanical properties (Stankovich
et al. 2006; Kuilla et al. 2010). The recent advances in
graphene mass production enabled high-rate manufacturing
of new graphene-based materials as well, suitable for the next
generation of polymer nanocomposites (Mittal 2014;

Saravanan et al. 2014). In particular, graphene oxide (GO)
has become one of the most popular due to its straightforward
synthesis from graphite oxide by exfoliation sonication in wa-
ter (Hummers and Offeman 1958; Dreyer et al. 2010; Chen
et al. 2013) and its large potential of application in many
different fields (Zhu et al. 2010).

Final composite properties highly depend on homogeneous
and fine dispersion of the filler phase into the hosting matrix.
Various processing techniques of polymer nanocomposites
have been recently reviewed where the role of processing
conditions, surface chemistry/modification of fillers, and
polymer-filler compatibility is probed in order to achieve good
filler dispersion in the first place (Fawaz and Mittal 2014).
Earlier studies have reported several combinations of melt
intercalation and extrusion technique for polymer composites
compounding with graphene-based 2D particles, where differ-
ent final dispersion states are obtained depending on the actual
particle exfoliation efficiency, i.e., 2D particle aspect ratio
(Kim et al. 2010a; El Achaby et al. 2012; Munoz et al.
2018). Although using pre-exfoliated 2D particles generally
represents the main key-factor to obtain a good filler disper-
sion, graphene-based-polymer nanocomposite morphology
and its viscoelastic behavior are shown to be significantly
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affected by initial particle concentration and processing pa-
rameters, such as extrusion screw rotational speed (Munoz
et al. 2018), deformation history, and annealing time (Kim
and Macosko 2009).

GO have recently attracted a lot of interest in both research
and industry field since they have been shown to have broad
intermolecular interactions with many types of polymeric sys-
tems (Kuilla et al. 2010; Potts et al. 2011; Hu et al. 2014; de
Oliveira et al. 2019b) due to their size-dependent
amphiphilicity (Kim et al. 2010b). Indeed, GO-polymer nano-
composites are generally characterized by good particle dis-
persion degree, high interfacial adhesion strength, and rein-
forcement efficiency due to electrostatic and van der Waals
intermolecular forces, even in low-polar polymer systems
(Wan and Chen 2012). Moreover, it has been shown as well
that GO can act as “processing aids” in different polymeric
matrices, allowing to produce high performance materials
with less severe processing parameters and with very low
concentrations (Pinto et al. 2020; Danda et al. 2020).

A universal description of polymer nanocomposites and
their viscoelastic properties is still missing due to the variable
nature of both particle phase and particle-polymer interac-
tions. However, many carbon-based composites have showed
a characteristic viscoelastic response in terms of storage mod-
ulus at low frequency, creep-recovery compliance, and shear
thinning exponent typical of other filled systems at percolation
and above-percolation filler concentrations (Zhao et al. 2005;
Leblanc 2009; Münstedt 2016; Ivanov et al. 2017).
Rheological percolation concentration has indeed been used
as particle dispersion indicator in many polymer composite
systems for the observed mechanical reinforcement and vis-
cosity increase (Wagener and Reisinger 2003), with a strong
correlation to electrical percolation in some cases (Pötschke
et al. 2002; Wu et al. 2006; Chen et al. 2015; Helal et al.
2019). In case of anisotropic particles, percolation-threshold
concentrations are found to be inversely proportional to the
aspect ratio and the dispersion state of particles, mainly ex-
plained via excluded volume theory (Balberg et al. 1984;
Garboczi et al. 1995; Kharchenko et al. 2004; Stankovich
et al. 2006; Li et al. 2007; Sun et al. 2009; Nan et al. 2010;
Stauffer et al. 2014). Moreover, different polymer-filler blend-
ing methods (Ivanov et al. 2017), and bulk polymer architec-
ture (Liao et al. 2012) are shown to significantly affect
percolation-threshold as well.

Besides mechanical reinforcement effects and viscosity in-
crease expected upon particles addition, reduction of shear
modulus and viscosity have been also reported for spherical
and platelet particles (Mackay et al. 2003; Zhang et al. 2006;
Jain et al. 2008; Munoz et al. 2018; de Oliveira et al. 2019b;
Ferreira et al. 2019). Such viscoelastic response has been ad-
dressed via nanoparticles confinement (Mackay et al. 2003),
and selective polymer chain adsorption (Zhang et al. 2006;
Jain et al. 2008), or stack interlayer slipping (Song et al.

2014; Munoz et al. 2018; de Oliveira et al. 2019b) for polymer
composites prepared from either solution blending or melt
compounding. Ferreira et al. have recently suggested that
aggregate-aggregate slippage is more likely to occur when
modulus and viscosity decrease are observed under
shear deformations for molten graphene-based nanocom-
posites due to the incommensurable contact of the high
stack interlayer of graphite, graphite oxide, and
graphene oxide platelets (Ferreira et al. 2019).

Although nanocomposite properties are mainly determined
by particle network when particle content is above percola-
tion-threshold, 2D-particle composites represent an intriguing
category of materials to exploit relations between the micro-
scopic mechanism and macroscopic rheology at below
percolation-threshold as well, due to their enhanced specific
area and interphase interactions. To this end, viscoelasticity of
polymer nanocomposites can be probed in the linear regime in
more details without incurring in well-known problems asso-
ciated with composite melt rheometry, such as time-
temperature equivalence (Zouari et al. 2012), and wall slip
over solid surfaces (Malkin 1990; Leblanc 2002).

To the best of our knowledge, no attempt has been made so
far to investigate the relation between the morphological dis-
persion and the rheological behavior/response of GO-polymer
nanocomposites at filler content below percolation-threshold.
Based on our recent results on successful two novel melt
compounding strategies for polymer nanocomposites with
low agglomeration concentration of GO and other 2D parti-
cles (Munoz et al. 2018), the present work reports the rheo-
logical signature of GO-polystyrene nanocomposites at parti-
cle concentration below percolation-threshold obtained via
liquid-phase feeding (LPF) method as described elsewhere
(Munoz et al. 2018). The nanocomposite morphology was
analyzed via scanning electron microscopy and X-ray
microtomography, showing different levels of dispersion and
exfoliation of GO within the matrix. The linear viscoelastic
behavior is investigated via dynamic oscillatory measure-
ments, where time-temperature superposition principle is an-
alyzed, and shows long-range dynamics only to be affected
depending on the dispersion and exfoliation degree of GO
particles, as confirmed by relaxation spectra.

Materials and methods

Materials

Homopolymer polystyrene (PS) (ρ = 1.05 g cm-3, Mw =
170600 g mol-1, and PI ~ 2) was provided by INOVA,
Brazil. Natural graphite powder (≤ 150 μm, 99.9%) was pur-
chased from Sigma-Aldrich. Potassium permanganate
(KMnO4, 99%) was purchased from Sigma-Aldrich. Sulfuric
acid (H2SO4 98%), hydrochloric acid (HCl, 6 M), hydrogen
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peroxide (H2O2, 30% v), and ethanol ACS were supplied by
Vetec. All the materials were used as received.

Synthesis of multilayer graphene oxide

Graphite oxide (GrO) was prepared from powdered flake
graphite following Hummer´s modified method (Hummers
and Offeman 1958; Stankovich et al. 2007) by decreasing
the total oxidation time to one hour as described in our previ-
ous study (Munoz et al. 2018). Pre-exfoliated graphene oxide
(GO) 2D particles were obtained by adding GrO (200 mg) to
100 mL of deionized water, then sonicated for 30 min. Final
GO suspensions were constantly stirred at ~ 350 rpm in order
to avoid earlier precipitation before their incorporation
into the polymer matrix. The obtained material present-
ed most of the particles around 17 nm thickness (< 20
layers), and lateral size about 400 nm, as described in
our previous work (Munoz et al. 2018).

Preparation of graphene oxide-based polystyrene
nanocomposites

The filler-polymer mixing did occur in a co-rotational twin-
screw extruder with length-to-diameter (L/D) ratio = 40 with
constant rotat ion speed of 350 rpm (Process 11,
ThermoScientific). The polymer was fed to the extruder at a
constant mass rate of 4 g min-1, whereas the GO suspension
was injected via a peristaltic pump system. The extruder op-
erational temperature ranges from hopper to die was as fol-
lows: 170 / 230 / 250 / 250 / 260 / 230 °C. In this way, GO
particles were always added at the polymer flow state above
glass transition temperature Tg for polystyrene, enhancing
filler-polymer mixing. The final filler concentrations of the
polymer nanocomposite investigated in this work were con-
trolled via peristaltic pump flow rate and were equal to 0.06,
0.18, and 0.3 vol% via liquid-phase feeding (LPF) method.
More details about filler-polymer extrusion processing can be
found in Munoz et al.’s work (Munoz et al. 2018).

Characterization methods

Computerized micro-tomography

X-ray microtomography samples with 8 mm3 from tensile
strength specimens were used and analyzed in a SkyScanner
1272 (Bruker). A 20-kV and 175-μA source was used with 2
μm/pixel resolution.

Scanning electron microscopy

To examine the GO particle dispersion and size, the samples
were cut into ultrathin slices (~ 60 nm thick) using a Leica
model CM 1850 series microtome at room temperature. Then,

the samples were observed in a Jeol JSM-7800F microscopy
in transmission mode at 30 keV equipped with an energy filter
spectrometer within the column.

Rheology

Viscoelastic behavior of GO nanocomposites was investigat-
ed by a series of dynamic oscillatory in shear with a controlled
stress rheometer (Anton Paar, Physical MCR 102) equipped
with stainless steel 25 mm diameter parallel plate geometry/
measuring system and a Peltier bath as temperature control
unit. Disk specimens with 25 mm diameter and 1 mm thick-
ness were prepared by applying ~ 17 bars (3 tons-force) for
2 min at 230 °C in a hot press. The specimens were allowed to
relax for 5 min in order to release any residual stress devel-
oped during the compression molding process before
performing any rheological measurement. Fresh sample was
loaded at each operational temperature and good contact be-
tween the sample and the plates was ensured with careful
normal force monitoring. Oscillatory shear measurements
were carried out at 1 mm gap and at three different tempera-
tures (180, 200, and 230 °C) under nitrogen air atmosphere (>
99% nitrogen purity at 5 bar frommanufacture instructions) to
avoid sample degradation. In order to determine the linear
viscoelastic region of GO nanocomposites, strain sweep tests
were performed applying shear strain values from 0.1 to 100%
and at angular frequencies of 0.1, 10, and 100 rad/s (results
not shown here).

From frequency sweep tests, dynamic moduli G’ and G”
(storage and loss modulus, respectively) were measured as a
function of angular frequency ω (100–0.01 rad/s) at strain
values between 0.5 and 10% according to the linear material
response window during the strain sweep test.

Results and discussion

Graphene oxide composites morphology

Information about GO characterization can be found in our
previous study (Munoz et al. 2018). Here, we present the
morphological information obtained by micro-CT that shows
GO segregation in all compositions, even at the lowest GO
concentration (0.06 vol%) (see Fig. 1a and b). The main dif-
ference between the two samples is the number of particles.
Munoz et al. reported 113 particles/mm3 and 384 particles/
mm3 for samples 0.06 vol% and 0.30 vol%, respectively. No
significative geometrical changes were noticed between
phases within the different PS-GO composites as observed
by superficial area distribution in Fig. 1c. The fact that no
change is observed in particles sizes may indicate that our
filler-polymer processing induces the segregated morphology,
probably because of the combination of fast evaporation of
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water molecules in contact with softened polymer and low
compatibility between filler and polymer phases.

Due to the presence of oxygenated groups, GO presents an
excellent colloidal stability in water, mainly attributed to ion-
izable edge-COOH groups (Lerf et al. 1998; Li et al. 2008).
These functional groups are located at a basal plane made of
hydrophobic unoxidized benzene rings (Nakajima and
Matsuo 1994; Cai et al. 2008), which confers an amphiphilic
nature to GO. Due to this nature, GO particles has been dem-
onstrated to be edge-to-area ratio dependent (Cote et al. 2009;
Kim et al. 2010a). As well as GO particles, PS chains present
aromatic rings along their backbone chain, being able to es-
tablish secondary weak forces, mainly π-π interactions. Yang
et al. indeed observed that PS chains and GO particles show
intermolecular interactions via π-π conjugation, where the
phenyl groups of PS side chains tend to be vertical to the
surface of graphene-based sheets (Yang et al. 2005). On the
other hand, GO particles can interact among them through
their graphene-based basal plane and oxygenated basal-edge
groups due to π-π interactions and short-range electrostatic
interactions (such as van der Waals forces), respectively.
The GO-GO interaction is somewhat dominant and reduces

the possibility of GO dispersion into PS matrix at nanometric
scale, keeping microphase stable, even after GO particles pre-
exfoliation, as observed in micro CT images in Fig. 1a and b.
Since we demonstrated no geometrical differences between
the phases of PS and GO within composites with 0.06 vol%
and 0.30 vol%, the effect of GO in the composite final prop-
erties is a consequence of the number of particles per volume
unit only, that changes the total available interfacial area.

The morphological dispersion features of the 2D GO par-
ticles in the polymer matrix were observed by scanning elec-
tron microscopy (SEM). Figure 2a and b show the SEM mi-
crographs of the PS-GO nanocomposites samples with
0.06 vol% and 0.30 vol%. The GO particles can be readily
recognized from the observation in contrast difference, with
respect to the polymer matrix, from which the shape and the
size of the exfoliated and dispersed 2D GO particles are ob-
served by SEM images. The thin GO layers observed in Fig.
2a indicate high degree of exfoliation. Figure 2b displays the
increase of segregation with the concentration of the PS-GO
nanocomposites samples with 0.30 vol%; however, it is still
possible to observe thin layers indicating the exfoliated state
of the GO layers inside the matrix.

Fig. 1 Reconstructed micro CT images of PS composites with (a) 0.06 vol%, (b) and 0.30 vol% of GO; (c) Superficial area distribution estimate using
CTAn and CTVol softwares, images generated in CTVox (Brüker)
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Linear viscoelasticity behavior

Polymer nanocomposites obtained via polymer-filler melt
blending have their mechanical properties directly related to
the dispersion state of particles and polymer-particle interac-
tions (Lebaron et al. 1999; Ding et al. 2005; de Oliveira et al.
2019a). It is therefore very important to be able to quantify
size and dispersion degree of the particles embedded into the
polymeric matrix. To this end, we have performed a series of
small amplitude oscillatory shear measurements at three dif-
ferent temperatures on our PS-based nanocomposites filled
with GO-2D particles at different volume concentrations.

Figure 3 displays the evolution of storage (G’) and loss
(G”) moduli as a function of frequency for both neat PSmatrix
and PS-GO nanocomposites. Specifically, both dynamic mod-
uli are presented as master curves at Tref = 200 °C and obtain-
ed by frequency-scale aT shifts only as time-temperature de-
pendence. The observed mechanical spectrum for all the

systems describes the terminal relaxation behavior upon
reaching the terminal crossover within the displayed frequen-
cy range. In particular, a typical viscoelastic liquid scaling for
the terminal relaxation region (i.e., G” ∝ ω and G’ ∝ ω2) is
observed for both neat PS matrix and all PS-GO nanocompos-
ites. The terminal relaxation time λ, corresponding to the in-
verse of the terminal crossover frequency, is found to shift
towards higher values for PS-GO nanocomposites with re-
spect to the neat PS matrix but independent of filler concen-
tration (λPS ~ 6 ms for neat PS matrix, λPS-GO ~ 10 ms for all
nanocomposites).

These findings suggest that GO-2D particles are capable to
engage and slow down the entanglement relaxation process of
linear PS chains within the polymer matrix, independently on
the volume concentration of particles investigated. Similar
behavior was observed in solid state through low-field nuclear
magnetic resonance (Munoz et al. 2018). This is a little in
contrast to what observed for other anisotropic graphene-

Fig. 2 Scanning electron
micrographs of PS composites
with (a) 0.06 vol%, and (b)
0.30 vol% of GO
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based polymer composites, in particular carbon nanotubes-
filled systems, where the small strain dynamic properties sug-
gest high memory behavior already at particle concentration
values as small as our case study (Kharchenko et al. 2004; Du
et al. 2004). On the other hand, the temperature dependence of
experimentally observed relaxation times is seen to follow the
well-knownWLF dependence for all the investigated systems
(Ferry 1980),

logaT ¼ −C0
1 T−T0ð Þ

C0
2 þ T−T 0

ð1Þ

where aT is the frequency-scale shift, T and T0 are the exper-
imental and reference temperature, respectively, C0

1 and C0
2

are the fitting parameters at the reference temperature.
Figure 4 shows experimental data of log aT as a function of
temperature for both neat PS matrix and PS-GO nanocompos-
ites at reference temperature T0 = 200 °C, which were fitted by

using Eq. 1. Values of C0
1 and C0

2 parameters are within the
range of the PSmatrix for all the systems and are confirmed by
previous experimental observations for linear PS at the same
reference temperature (Coppola 2020, private communica-
tion). This confirms that experimentally observed relaxation
times of both neat PSmatrix and PS-GO nanocomposites have
the same temperature dependence. Thus, local microstructure
of linear PS chains is not altered by the presence of GO-2D
particles at the investigated volume concentrations.

No significant mechanical reinforcement via modulus in-
crease is observed at frequencies higher than the terminal
crossover between PS-GO nanocomposites and PS matrix.
Therefore, while hindering polymer chains motion within
their reptation tube, GO-2D particles do not form a fully per-
colated filler network, even at the highest particle content (0.3
vol%). This is in contrast with what recently observed for GO
aqueous suspensions (Ng et al. 2020) and other polymeric
media (Gudarzi and Sharif 2012). On the other hand, our
finding is in line with earlier results reporting percolation
threshold starting at ~ 0.5–0.6 %vol when filler-polymer melt
compounding without sonication was employed (Kim and
Macosko 2009).

Influence of GO particles size on chain molecular
relaxation

In the linear theory of viscoelastic fluids, relaxation time spec-
trum H (τ) is an efficient tool to probe the effects of polymer-
filler interface on local and/or global relaxation dynamics of
polymer molecules when experimental linear viscoelastic ma-
terial functions are available (Kotsilkova and Pissis 2007;
Angelov et al. 2014).

The relaxation time spectrum H (τ) is referred as the set of
contributions of relaxation processes occurring within the
sample. Each relaxation process provides a strength at certain
time scale to the overall relaxation process of polymer chains.
As particles are added, in case the mobility of polymer chains
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is affected, the relaxation time spectrum can either shift or
broaden (i.e., global or local changes in polymer relaxation
behavior, respectively) due to polymer-filler interface effects
(Sternstein and Zhu 2002; Angelov et al. 2014).

Figure 5 displays the relaxation time spectrum H (τ) as a
function of relaxation time τwhichwas calculated by using the

program ReSpect v2.0 developed by Takeh and Shanbhang
(Takeh and Shanbhag 2013). A little shift of the full relaxation
spectra of PS-GO nanocomposite towards higher relaxation
times compared to the neat PS matrix is observed, but no
appreciable broadening as well. This confirms our earlier re-
sults on dynamic moduli where the relaxation dynamics on the
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Fig. 5 Relaxation spectrum H (τ)
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for neat PS matrix and PS-GO
nanocomposites at Tref = 200 °C

Fig. 6 Schematic of the expected interactions between polystyrene chains and GO
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whole linear polymer chain only (e.g., reptation) are observed
to be affected upon GO-2D particles addition to the polymer
host, but no significative change in the local polymer relaxa-
tion behavior (i.e., same temperature dependence). It is worth
mentioning that, given its small intensity, the presence of a
second peak in the relaxation spectrum of all the systems is
attributed to some polydispersity of linear PS chains, which
further broadens the observed spectrum (Ferry 1980).

Ellison et al. showed that for amorphous polymers, the pres-
ence of attractive interfaces could decrease the mobility of the
whole polymer chain, whereas repulsive interfaces can increase
the molecular mobility (Ellison and Torkelson 2003).
Apparently, the presence of GO-2D particles in PSmatrix direct-
ly affects the terminal relaxation time of the polymer chains by
means of attractive particle-polymer interfaces. They act as an
energetic barrier for themotions of at least several Kuhn length of
the polymer chain segments that are in direct contact to the par-
ticle surface. As seen for carbon nanotubes and other graphene-
based sheets composite materials (Yang et al. 2005), such attrac-
tive polymer-particle interactions have been addressed as π-π
conjugation between the side phenyl groups of linear PS chains
and graphene-based basal plane of GO-2D particles. These at-
tractive π-π interactions are due to the electronic displacements
in aromatic ring, caused by lateral group, which generates a
quadripole as proposed by Martinez and Iverson (Martinez and
Iverson 2012). This electronic displacement takes place in phenyl
groups located at PS chain and graphene-based basal plane of
GO as displayed in Fig. 6. Due the electrostatic attraction be-
tween the quadripoles, the phenyl groups of PS tend to stackwith
GO graphitic plane through the alignment of opposite poles. GO
with different oxidation levels have already been demonstrated
that influences the rheological behavior of different systems
(Soares et al. 2020; Moraes et al. 2020). Thus, as a future work,
different oxidation degrees of GO should be studied with the aim
to investigate how it will change the electronic displacement by
tuning the interphase interactions development.

Moreover, a clear signature of percolation and network
induction of graphene particles is missing, confirming the
hypothesis/speculation that only particle-polymer interactions
can take place within the polymer matrix as long as attractive-
like particles are homogeneous dispersed at below-percolation
concentration.

Conclusions

In this work, the melt linear viscoelastic properties of PS-GO
nanocomposites under oscillatory shear were investigated and
correlated with the morphological information obtained by
micro-CT and SEM. Comparison of the dynamics moduli
(G’ and G”) in the frequency domain between the linear neat
polymer matrix and nanocomposites reveals only long-range
dynamics perturbations when GO-2D particles content is

below percolation threshold. Indeed, the presence of particles
extends the reptation dynamics effect of the linear PS chains
towards higher relaxation times, regardless the particle con-
tent, while the moduli response did not show any apparent
mechanical reinforcement effect. Our hypothesis is that attrac-
tive interfacial interactions between polymer chains and GO-
2D particles via π-π binding of benzene rings are causing the
stress tube relaxation delay of each linear PS chain, as seen for
other graphene-based polymer nanocomposites. Taking into
account that such attractive interactions depend on GO exfo-
liation level, our findings in oscillatory shear rheology are an
indirect evidence of high exfoliated GO-2D particles homo-
geneously embedded into PS-GO nanocomposites. Given the
low particle concentration range exploited in this case study,
we ensured that flow properties of PS-GO nanocomposites
were not affected by the superposition of particle-particle in-
teractions due to percolated filler network.

Moreover, a good processing of such polymer composite
systems is easy to achieve at different production scales, with
graphene content fulfilling other requested material properties
(e.g., electrostatic discharge), which requires only a relatively
low level of concentration.
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