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Abstract

A facile, cost-effective, non-toxic, and surfactant-free route has been developed to
synthesize MoS2/carbon (MoS2/C) nanocomposites. Potassium humate consists of a
wide variety of oxygen-containing functional groups, which is considered as promising
candidates for functionalization of graphene. Using potassium humate as carbon source,
two-dimensional MoS2/C nanosheets with irregular shape were synthesized via a
stabilized co-precipitation/calcination process. Electrochemical performance of the
samples as an anode of lithium ion battery was measured, demonstrating that the
MoS2/C nanocomposite calcinated at 700 °C (MoS2/C-700) electrode showed
outstanding performance with a high discharge capacity of 554.9 mAh g− 1 at a current
density of 100 mA g− 1 and the Coulomb efficiency of the sample maintained a high level
of approximately 100% after the first 3 cycles. Simultaneously, the MoS2/C-700
electrode exhibited good cycling stability and rate performance. The success in
synthesizing MoS2/C nanocomposites via co-precipitation/calcination route may pave a
new way to realize promising anode materials for high-performance lithium ion
batteries.

Background

Due to their high energy density, long cycle life, and environmental friendliness, lithium
ion batteries (LIBs) are widely utilized in portable electronic devices [1] (e.g., mobile
phones and watches), electric vehicles [2, 3], and renewable energy storage [4,5,6,7,8].
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Graphite is the most widely used anode materials in commercial LIBs, benefiting from
its low working voltage, good conductivity, and low cost [9,10,11]. However, the
characteristic structure of graphite leads to feasible generation of LiC6, allowing only
one lithium ion intercalation in every six carbon atoms which results in a low theoretical
specific capacity of 372 mAh g− 1, which is far away from the current business
requirements [12].

Currently, it is preferred to obtain appropriate electrode materials in LIBs for higher
battery capacity, longer cycle life, and better rate capability. Consequently,
Li-alloy-based anode materials [13], transition metal oxides [14], oxysalts, and
transition metal sulfides [15] are often served as the anode materials in LIBs, since these
materials display all the necessary properties for appropriate electrode materials.
Among these materials, transition metal sulfides (e.g., CuS2 [16], WS2 [17], and
MoS2 [18,19,20] have been an exciting topic in research as they are earth-abundant and
show high specific capacity when used as anode materials in LIBs [21]. As a typical
representative, MoS2 has gained a lot of attention due to its particular S-Mo-S layered
structure [22], high theoretical specific capacity compared to traditional graphite anode,
and there is a transfer reaction of four electrons when used as anode materials in LIBs
[23, 24]. In addition, the van der Waals forces between the MoS2 layers are very weak,
allowing lithium-ion diffusion without causing significant volume change [25, 26].
However, MoS2 is still an unsatisfactory anode material due to its low electrical
conductivity, leading to the poor cycling and rate performance [27]. To solve this
problem, a number of strategies have been developed to improve its electrical
conductivity such as the incorporation of MoS2 with carbon materials [28,29,30].

To date, a variety of MoS2/carbon composites have been synthesized as anode materials
in LIBs, namely, layered MoS2/graphene composites [31], MoS2/C multilayer
nanospheres [32], MoS2-CNT composite [33], multilayered
graphene/MoS2 heterostructures [34], or petal-like MoS2 nanosheets space-confined in
hollow mesoporous carbon spheres [35]. Despite gratifying progress in electrical
conductivity, cycling, and rate performance of the electrode, some other conflicts in the
synthesis method have persisted. At present, the most commonly used synthetic method
is hydrothermal approach followed by an annealing process, which can introduce
carbon matrix with some surfactants such as sodium oleate or oleyamine and sulfur
element with some L-cysteine in the first procedure. Moreover, expensive and toxic
organic reagents were always indispensable and unavoidable during the synthesis
process when compared with co-precipitation method. Currently, co-precipitation
method is just beginning to gain popularity in the synthesis of inorganic nanostructured
materials due to its cost-effective, non-toxic, trustworthy, and stable [36, 37]. To the
best of our knowledge, there has been little report on the synthesis of MoS2/C
nanocomposite by co-precipitation/calcination process, especially with potassium
humate.

Potassium humate, a sort of aromatic hydroxy carboxylate, which consisted of a wide
variety of oxygen-containing functional groups, can be considered as functionalized
graphene candidate [38]. In general, a great deal of researches have been made to use
potassium humate as carbon source to synthesize carbon materials under extremely
harsh conditions [38, 39]. Huang [38] reported that potassium humate can be
straightforward carbonization to prepare reduced graphite oxide materials. In this paper,
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MoS2/C nanocomposites were synthesized via a co-precipitation/calcination route, by
employing an organic matter (potassium humate) and an inorganic substance
((NH4)6Mo7O24) as reagents. The electrochemical performance of the samples as a LIBs
anode was measured, and the results showed that the sample calcinated at 700 °C
(MoS2/C-700) exhibited better cycling ability and rate behavior. The discharge capacity
of the sample remained at 554.9 mAh g− 1 after 50 cycles at the current density of
100 mA g− 1, which is much better than the other two samples calcinated at 600 °C and
800 °C, respectively. Meanwhile, the as-prepared MoS2/C-700 displays a comparable
electrochemical performance [40, 24].

Methods/Experimental

Potassium humate was obtained from Double Dragons Humic Acid Co., Ltd. Xinjiang
(China), and the composition analysis of potassium humate was shown in
Additional file 1: Table S1. All of the chemical reagents (except potassium humate)
were of pure analytical grade and used without further purification.

Synthesis of MoS2/C

The precursor was prepared by co-precipitation from (NH4)6Mo7O24 and potassium
humate in the presence of HNO3 followed by a freeze-dried process for 2 days. In a
typical procedure, 4 g of potassium humate were dissolved in 40 mL of 0.25 M
(NH4)6Mo7O24 solution. Subsequently, the above-mentioned solution was added
dropwise to 100 mL of 0.5 M HNO3 solution with vigorous magnetic stirring. The
duration of the magnetic stirring was for several hours. The lower precipitation was then
separated from the mixture solution, freeze-dried, and labeled as Mo-HA precursor. The
precursor was mixed with anhydrous Na2SO4 (with a proportion of 1:10) and ground in
a mortar to form a homogeneous mixture. The mixture was then calcinated at 700 °C for
3 h (with a heating rate of 10 °C min− 1) and then naturally cooled down to room
temperature. Finally, the products were washed with deionized water and ethanol three
times followed by a freeze-dried procedure to obtain the MoS2/C powder. In parallel, the
samples calcinated at 600 and 800 °C were synthesized as well.

Characterization

The surface organic functional groups of potassium humate were measured by Fourier
transform spectrophotometer (FT-IR, VERTEX 70, Bruker) with KBr as the reference
sample. The structure and morphology of different samples were characterized by X-ray
diffraction (XRD, BRUKER D8 Advance) with Cu Kα radiation (λ = 1.54178 Å),
transmission electron microscopy (TEM, Hitachi H-600), high-resolution transmission
electron microscopy (HRTEM, JEM-2100F), LEO 1450VP scanning electron
microscope (SEM), energy-dispersive X-ray spectrometer (EDX), and X-ray
photoelectron spectroscopy (XPS, ESCALAB 250Xi spectrometer). Thermogravimetric
analyses (TGA) were conducted on a thermogravimetric analyzer (Netzsch TGA 409).
Raman spectrum was carried out on Bruker Senterra with 532 nm wavelength.

Electrochemical Measurements

Electrochemical measurements were performed on coin cells. The working electrodes
were fabricated by mixing 80 wt.% of the as-prepared MoS2/C active materials, 10 wt.%
of acetylene black, and 10 wt.% of polyvinylidene fluoride (PVDF) in
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N-methyl-2-pyrrolidinone (NMP) solvent to form a homogeneous slurry. The slurry was
coated on the copper foil and dried in a vacuum at 110 °C for 12 h. The coin cells were
assembled in an argon-filled glovebox. In the measurement, lithium foil was used as the
counter electrode and reference electrode, and a polypropylene film (Celgard-2400) was
used as a separator. The electrolyte solution was 1 mol L− 1 LiPF6 in ethylene carbonate
(EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) (EC/DMC/DEC, 1:1:1,
volume ratio). The galvanostatic charge-discharge measurements were performed in a
potential range of 0.01–3.0 V by using a LAND CT2001A battery testing instrument
(Wuhan) at room temperature. Cyclic voltammetry (CV) measurements were performed
on an electrochemical work-station (CHI 660D) at a scanning rate of
0.1 mV s− 1 between 0.01 and 3.0 V.

Results and Discussion

The surface chemistry of potassium humate was studied using FTIR spectrum. In
Fig. 1a, the broad peaks centered at 3400 cm− 1 were ascribed to the stretching vibrations
of −OH, −COOH, and H2O bonds, The peaks at 1627, 1413, and 1050 cm− 1 were
attributed to the stretching vibrations of the −COO groups and −CH, −OH and so on
[41], respectively, indicating the rich oxygen-containing functional groups on the
surface of pure potassium humate, which is beneficial to complexation reaction or
adsorption. TGA curve of the homogeneous mixture of Mo-HA precursor and
anhydrous Na2SO4 (with a proportion of 1:10) in an argon atmosphere with a heating
rate of 10 °C min− 1 is shown in Fig. 1b. It can be seen that there are three steps of
weight loss in the TGA curve. The first weight loss is 1.59% from room temperature to
250 °C, which may be due to decomposition of the water in the surface of the Mo-HA
precursors. There are another two consecutive steps of weight loss, with a weight loss of
1.35% from 250 to 500 °C, and a weight loss of 3.17% from 500 to 800 °C, and then the
mass remains constant, indicating that the precursor has been decomposed completely at
800 °C. For such a system, we choose those three temperatures for calcination as 600,
700, and 800 °C, denoted as MoS2/C-600, MoS2/C-700, and MoS2/C-800, respectively.

Fig. 1

a FT-IR spectra of pure potassium humate. b TGA curve of the homogeneous
mixture of Mo-HA precursor and anhydrous Na 2SO4 (with a proportion of 1:10)

Full size image

According to the literature [34], a possible mechanism of the reaction process has been
proposed and schematically depicted in Scheme 1. Moreover, the corresponding
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formulas are listed in Additional file 1: Equations 1–5. In these equations, potassium
humate was abbreviated as K-HA. There might be a complexation when potassium
humate was dissolved in (NH4)6Mo7O24 solution, with the participation of
HNO3 solution, which leads to the generation of Mo-HA. After heating the mixture of
the Mo-HA precursor and anhydrous Na2SO4 in an argon atmosphere at a relatively high
temperature, the Mo-HA precursor would be carbonized to form the intermediate of
amorphous carbon, and then the intermediate would reduce anhydrous Na2SO4 to
generate Na2S, further hydrolyzed to hydrogen sulfur. Finally, hydrogen sulfur may
react with MoOx, leading to the formation of MoS2/C nanocomposites.

Scheme 1

Schematics depicting the fabrication procedure of MoS2/C nanocomposite

Full size image

Figure 2a–b show the XRD patterns and Raman spectra of the MoS2/C nanocomposites
calcinated at different temperatures. Figure 2a shows that almost all the diffraction
peaks of MoS2/C-600 and MoS2/C-700 can be well indexed to the hexagonal
MoS2 phase (JCPDS card no. 86-2308), which is consistent with those of previous
report [42]. There are still some other peaks mismatching the standard card in the
MoS2/C-800 sample. We speculate that the crystalline of MoS2/C has been destroyed at
high temperature. From the Raman spectra (Fig. 2b), it can be seen that the peaks
located in between 379 and 400 cm− 1 belonged to E1 2g (the in-plane displacement of Mo
and S atoms) and A 1g (out-of-plane symmetric displacement of Mo and S atoms) Raman
modes, respectively [24, 43]. The bands appeared at 1347 and 1589 cm− 1 were the
characteristic D- and G-band, and the value of I D /I G were 0.96, 0.91, and 0.94 as the
temperature goes from 600 to 800 °C. The former corresponds to the amorphous carbon
or sp3-hybridized carbon (D-band), and the latter assigned to the sp2-hybridized carbon
(G-band) [44]. Although there is no great distinction between the degree of
graphitization, the MoS2/C-700 sample is still a little higher than the other two samples
to a certain extent, indicating that the carbon in this sample is not only in the form of
amorphous carbon, but also some graphitic carbon. Therefore, we focused on the
MoS2/C-700 sample in the following investigations.

Fig. 2
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a XRD patterns. b Raman spectra of MoS2/C nanocomposites calcinated at
different temperatures. c Survey XPS spectra of MoS2/C-700. d High-resolution
XPS spectra of Mo 3d. e S 2p. f C 1 s

Full size image

To further study the chemical composition and chemical bonds of MoS2/C-700, X-ray
photoelectron spectroscopy (XPS) analysis was carried out. The survey XPS spectrum
(Fig. 2c–f) reveals the presence of Mo, S, C, and O elements in the MoS2/C-700
nanocomposite. The high-resolution XPS spectra of Mo 3d and S 2p are shown in
Fig. 2d, e, respectively. The peaks at 229.4 and 232.6 eV are assigned to the Mo
3d5/2 and Mo 3d3/2, confirming the existence of Mo in MoS2/C-700 [45, 46]. The
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presence of another XPS peak at 226.5 eV is indexed to S 2 s, which is resulted from
the surface of the MoS2/C-700 [47]. Moreover, the XPS peaks at 162.3 and 163.4 eV in
S 2p spectra are characteristic peaks of the S 2p3/2 and S 2p1/2 of MoS2, respectively.
Figure 2f shows that the C1 s spectrum can be divided into three peaks, denoted as C–C,
C–O, and C=O groups, respectively.

The EDX spectrum indicates that the sample calcinated at 700 °C contains Mo, S, and C
elements, as shown in Fig. 3a. Figure 3b, c show the SEM images of the sample of
MoS2/C-700. For comparison, the SEM images of MoS2/C-600 nanocomposite and
MoS2/C-800 nanocomposite were also shown in Additional file 1: Figure S1. In order to
explore the corresponding element distribution in the sample of MoS2/C-700, the
corresponding elemental mapping analysis were carried out. As shown in Fig. 4a–d, the
elemental mapping images of MoS2/C-700 demonstrated the uniform distribution of
Mo, S, and C all over the MoS2/C-700 nanocomposite, which is consistent with the
EDX and XPS results.

Fig. 3

a EDX spectrum of MoS2/C-700. b, c SEM images of MoS2/C-700 nanocomposite

Full size image

Fig. 4

a-d Elemental mapping images of MoS2/C-700; (e) TEM image, (f) the SAED and
(g) High resolution TEM image of MoS2/C-700 nanocomposite, (h) Enlarged
HR-TEM image of the marked area in figure (g)

Full size image
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As displayed in Fig. 4e–h, the morphology and structure of the as-synthesized MoS2/C
nanocomposites were investigated by transmission electron microscopy (TEM), selected
area electron diffraction (SAED), and high-resolution transmission electron microscopy
(HRTEM). The TEM image (Fig. 4e) and the SEM images (Fig. 3b, c) clearly show that
the structure of MoS2/C-700 nanocomposite is wrinkled two-dimensional nanosheets
with the width of ~ 800 nm and the thickness of ~ 20 nm. SAED pattern in
Fig. 4f shows that the hexagonal lattice structure of MoS2 is well crystallized.
Furthermore, the crystal lattices of the sample were shown at HRTEM profiles ((Fig. 4g,
h) and Additional file 1: Figure S2). The profiles showed highly crystalline
MoS2 nanosheets with an interlayer distance of 0.27 nm corresponding to (100) plane of
hexagonal MoS2 [24, 34]. In addition, Additional file 1: Figure S2 clearly reveals that
the carbon nanosheets were decorated with MoS2 nanosheets.

Figure 5a shows the CV curves of the first 3 cycles of MoS2/C-700 electrode at a scan
rate of 0.1 mV s− 1 in the potential window of 0.01–3.00 V vs. Li+/Li. During the first
cycle, the reduction peak at 1.0 V indicates the lithium insertion mechanism, which is
due to the insertion of lithium ions into the MoS2 layers to form LixMoS2. At the same
time, there has been a phase transition from 2H (trigonal prismatic) to 1T (octahedral)
[48]. Another reduction peak at 0.4 V is attributed to the conversion of LixMoS2 into
metallic Mo and Li2S. The broad oxidation peak located at 2.35 V represents the
deintercalation of Li2S to S. During the subsequent cycles, the two cathodic peaks at 1.0
and 0.4 V disappear with appearance of three new peaks at 2.0, 1.2, and 0.3 V,
indicating the reduction of MoS2 and the conversion from S8 to polysulfides and then to
Li2S [24].

Fig. 5
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a CV curves of the first three cycles of MoS 2/C-700 electrode at a scan rate of
0.1 mV s− 1. b Discharge and charge curves of the first 3 cycles of MoS2/C-700
electrode at a current density of 100 mA g− 1. c Cycling performance MoS2/C
electrode and the pristine MoS2 electrode at a current density of 100 mA g− 1, and
Coulombic efficiency of MoS2/C-700 electrode. d Rate performance of MoS2/C
and the pristine MoS2 electrode at the current densities ranging from 100 to
1000 mA g− 1

Full size image

The discharge and charge curves of the first 3 cycles of MoS2/C-700 electrode were
recorded, and the corresponding results were shown in Fig. 5b. In the first cycle, the
discharge and charge capacities of MoS2/C-700 electrode are 802.8 and 651.4 mAh g− 1,
respectively, with a Coulomb efficiency of 81.14%. The irreversible capacity loss may
be due to some irreversible reaction such as the decomposition of electrolyte and the
formation of solid electrolyte interface (SEI) film [49, 50].

The cycle stability of whole MoS2/C electrode and the pristine MoS2 electrode at a
current density of 100 mA g− 1 are presented in Fig. 5c. At the same time, the Coulomb
efficiency of MoS2/C-700 is also recorded. After 50 cycles, the discharge capacities of
MoS2/C-600, MoS2/C-700, MoS2/C-800, and pristine MoS2 electrode at a current density
of 100 mA g− 1 remain at 399.7, 554.9, 245.7, and 332.9 mAh g− 1, respectively. As
shown in Additional file 1: Table S1, it has summarized the discharge capacities after
50 cycles of MoS2-based electrode presented in other literature, the as-prepared
MoS2/C-700 display a comparable electrochemical performances compared to the
previous work. It is concluded that the MoS2/C-700 electrode shows the most
outstanding cycle performance and the Coulomb efficiency of the sample maintained a
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high level at about 100% after the first 3 cycles. It may benefit from the small amount
of graphitic carbon in this sample, leading to enhanced electrical conductivity of the
nanocomposite.

In addition to the cycling stability, the high-rate performance is also an important factor
for high-power applications. Figure 5d shows the rate performance of MoS2/C and the
pristine MoS2 electrode at the current densities ranging from 100 to 1000 mA g− 1. At
1000 mA g− 1, the discharge capacity of MoS2/C-700 can still maintain at a relatively
high value of ~ 450 mAh g− 1, which is higher than the other MoS2/C electrodes and
pristine MoS2 electrode we have prepared at the same current density. When the current
density is changed back to 100 mA g− 1, the capacity of MoS2/C-700 sample can recover
up to ~ 500 mAh g− 1 after 50 cycles at different current densities, revealing the good rate
capability of the sample.

The electrochemical impedance spectra (EIS) measurements on the MoS2/C and the
pristine MoS2 electrode were conducted in order to gain a further understanding about
the excellent electrochemical performance of the MoS2/C-700 sample (Fig. 6). There is
a semicircle at the high frequency region followed by a slope line at the low frequency
region on these Nyquist plots. It can be seen that the semicircle at the high frequency
region of the MoS2/C-700 sample is evidently smaller than that of the other three
samples, which is related with the charge transfer resistance (Rct) occurred at the
electrolyte and electrodes interfaces. Therefore, this result further implies that the
incorporation of potassium humate markedly improve the conductivity of MoS2, leading
to further improvement in the electrochemical performances.

Fig. 6

Nyquist plots of the MoS2/C electrode and the pristine MoS2 electrode tested in a
frequency range of 0.01 Hz to 100 kHz

Full size image

Conclusions

In this work, two-dimensional MoS2/C nanosheets were successfully synthesized via a
co-precipitation/calcination route by employing an organic matter (potassium humate)
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and an inorganic substance ((NH4)6Mo7O24) as reagents. Structural characterizations
show that as-prepared MoS2/C-700 nanocomposite is two-dimensional (2D) MoS2/C
nanosheets with irregular shape. The 2D MoS2/C nanosheets exhibited improved
electrochemical performance when fabricated as anode material for LIBs. Furthermore,
a possible reaction process was proposed. The current synthesis strategy may be
expanded into the synthesis of other nanocomposite that can be served as anode
materials for high-performance lithium-ion batteries.
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