
R E S E A R CH AR T I C L E

Polyurethanes synthetized with polyols of distinct molar
masses: Use of the artificial neural network for prediction
of degree of polymerization

Lucas Dall Agnol1 | Heitor Luiz Ornaghi Jr2 | Francisco Monticeli3 |

Fernanda Trindade Gonzalez Dias4 | Ot�avio Bianchi1,5

1Postgraduate Program in Materials
Science and Engineering (PGMAT),
University of Caxias do Sul (UCS), Caxias
do Sul, Rio Grande do Sul, Brazil
2Federal University for Latin American
Integration (UNILA), Foz do Iguaçu,
Parana, Brazil
3Department of Materials and
Technology, School of Engineering, S~ao
Paulo State University (Unesp),
Guaratinguet�a, Brazil
4Postgraduate Program in Technology and
Materials Engineering (PPG-TEM),
Federal Institute of Education, Science
and Technology of Rio Grande do Sul
(IFRS), Campus Feliz, Rio Grande do Sul,
Brazil
5Department of Materials Engineering
(DEMAT), Federal University of Rio
Grande do Sul (UFRGS), Porto Alegre,
Rio Grande do Sul, Brazil

Correspondence
Lucas Dall Agnol, Postgraduate Program
in Materials Science and Engineering
(PGMAT), University of Caxias do Sul
(UCS), Caxias do Sul, RS, Brazil.
Email: agnol.lucasdall@gmail.com

Otávio Bianchi, Department of Materials
Engineering (DEMAT), Federal University
of Rio Grande do Sul (UFRGS), Porto
Alegre, Rio Grande do Sul, Brazil.
Email: otavio.bianchi@gmail.com

Abstract

The molar mass of the polyurethanes (PUs)' reagents directly influences their

thermal response, affecting both the polymerization process and the enthalpy

and the degree of reaction. This study reports applying an artificial neural net-

work (ANN), associated with surface response methodology (SRM) models, to

predict the calorimetric behavior of certain PU's bulk polymerizations. A non-

catalyzed reaction between an aliphatic hexamethylene diisocyanate (HDI)

and a polycarbonate diol (PCD) with distinct molar masses (500, 1000, and

2000 g/mol) was proposed. A high level of reliability of the predicted calori-

metric curves was obtained due to an excellent agreement between theoretical

and modeled results, enabling creating a 3D surface response to predict the

reaction kinetics. Also, it was possible to observe that the polymerization

kinetics is affected by the OH group's association phenomena. The applied

methodology can be extended for other materials or properties of interest.
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1 | INTRODUCTION

Polymerization plays a significant role in industry and
academia because tailor-made properties can be obtained
by a profound understanding of the relationship between
reagents' reactivity and structure. Polycarbonate-based

polyurethanes (PUs), for example, are standing out in the
biomedical area due to their lower susceptibility to
hydrolysis compared to polyester-based PU and oxidation
compared to polyether-based PU, besides excellent
mechanical properties, controlled degradation, and bio-
compatibility.[1-4] These polymers are formed by a
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sequence of parallel step-growth polymerization reactions
that allow, at least in principle, to predict the system's
specific composition with time accurately. As a result, a
polymer with a two-segment structure is formed. The
thermodynamic incompatibility between soft and hard
segments of PUs leads to a microphase separation, rev-
ealed in a rubber-like matrix containing hard micro-
domains.[5] The flexible phase is a polyol, which
implements the rubber-like characteristic and elasticity
of the elastomers. The reaction of a polyol with
diisocyanate generates the polymers' rigid phase. The iso-
cyanate is highly reactive and creates products chemi-
cally different when combined with active hydrogen
( OH and NH functional substances), forming ure-
thane and urea groups. Chain extenders (e.g., short-chain
diols and diamines) are used as additives in the produc-
tion of PUs to increase the molar mass of polymer and
improve their properties.[6-8] Therefore, the suitable vari-
ation in the oligomers' structure and chemical composi-
tion allows to produce tailor-made materials, broadening
the range of PUs applications, including packaging,
cables, textile coatings, medical implants, biodegradable
adhesives, foams, among others.[9-11]

An increase in the soft segment chain length usually
increases the crystallinity degree and the microphase sep-
aration, thus enhancing the rubber-like mechanical prop-
erties and thermal stability.[12] The reaction kinetics can
be affected by chain length, reactivity/content of the
reagents, and chemical groups, which interfere in the soft
and hard building blocks' dynamics. The quantitative
perception of the polymerization kinetics is essential to
assess polyurethane industrial design and directly influ-
ence the type of morphology formed in the copolymer, as
well as the physical and mechanical properties.[2,13,14]

Several characterization methods have been used to mea-
sure the kinetics of polymerization reactions. The
approaches fall into two groups: (i) indirect techniques
that measure a physical property functionally related to
the reaction extent and (ii) direct methods that measure a
reagent or product concentration. Among the indirect
thermal methods used to control the kinetics' polymeriza-
tion reaction, differential scanning calorimetry (DSC) is
the most used for accompanying the curing process.[2]

Traditionally, the selection of proper theoretical
kinetic models can adequately describe the experimental
data. Nevertheless, the models rarely give a precise repre-
sentation of all aspects present in the experiments
because they can only represent the reaction's che-
mical nature. Other factors as specimen geometry,
thermomechanical history, volatility, and so on can also
influence the results. These conditions inflict several
experimental design problems in data analysis and inter-
pretation of results.[15] In this context, artificial neural

networks (ANNs) and quantitative structure–property/
activity relations (QSPR/QSAR) approaches have been
widely studied due to the results' reliability.[13,16,17]

Unlike QSPR/QSAR, quantitative structure–property/
activity relations), which followed a mathematical rule to
calculate a specific property (such as reaction enthalpy)
from descriptors attributes (topological, structural or con-
formational), ANN systems operate based on comprehen-
sive statistical curves.[18-21] Maybe the QSPR/QSAR
model's main drawback is that the analyses lack design
in the strict sense of experimental study. The analyzed
data collected may not reproduce the whole attribute
space. Consequently, several QSAR results cannot predict
the probable composites with the most suitable activity
safely. In this context, the ANN is an interesting and
powerful mathematical tool that enables the optimization
and prediction of data based on the input information
without any physical model assumptions. However,
because they do not require any knowledge about the
data source, ANNs use the estimation of many weights
that requires large training sets, which may be the most
significant drawback of this method. The combination of
QSPR/QSAR with ANN has also being studied by other
authors.[22] Considering that different parameter combi-
nations can significantly increase the experimental num-
ber and analysis time, Box and Wilson[23] tested the
surface response methodology (SRM) tool to obtain an
optimal response in the experiments' design. SRM
reduces the number of experiments to obtain results not
performed experimentally, keeping statistical relevance
and when combined with ANN can significantly improve
the results' reliability. [23-25]

Therefore, this study aims to apply the ANN approach
to fit the DSC curves of PUs produced from a polyol with
different molar masses at four different heating rates.
The ANN simulated curves were used to create a 3D sur-
face plot (by SRM), allowing to predict any DSC curve sit-
uated inside the range studied. Consequently, the
prediction of the polymerization degree concerning
the PUs molar mass is also possible. We believe that this
work will reduce a large number of experimental data for
the characterization of materials. This new data
processing methodology can be expanded to predict the
polymers' enthalpy reaction and other properties of inter-
est, reducing cost and analysis time.

2 | MATERIALS AND METHODS

2.1 | Materials

The polyols Eternacoll PH50 (hydroxyl number 224 mg
KOH/g, molecular weight 500 g/mol, functionality of 2,
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viscosity at 75�C = 65–120 cP), PH100 (hydroxyl number
110 mg KOH/g, molecular weight 1000 g/mol, function-
ality of 2, viscosity at 75�C = 400–630 cP, density
1.22 g/cm3) and PH200 (hydroxyl number 56 mg KOH/g,
molecular weight 2000 g/mol, functionality of 2, viscosity
at 75�C = 2200–2800 cP) based on a mix of
1,5-pentanediol and 1,6-hexanediol, were used as poly-
carbonate diol (PCD) and furnished by UBE Corporation
Europe (Spain). This monomer was dried at 80�C under
vacuum for 6 h before use. The isocyanate
1,6-hexamethylene diisocyanate (HDI, 99 + % purity,
CAS number: 822-06-0) with the functionality of 2 and a
free isocyanate index of 49.72 ± 0.07 wt.% (determined by
n-dibutylamine titration according to the ASTM D-2572)
was provided by Vencorex Chemicals (France) and used
as-received.

2.2 | Synthesis and monitoring of the
polymerization reaction

The PUs were synthesized without the use of organic sol-
vents and at stoichiometric amounts (1.0 NCO/OH molar
ratio) of 1,6-hexamethylene diisocyanate (HDI) and poly-
carbonate diol (PCD). The three polyols aforementioned
produced PUs with Mw of 500 (PU500), 1000 (PU1000),
and 2000 (PU2000) g/mol. These reagents were manually
mixed for 5 min at room temperature and transferred on
aluminum crucibles for DSC analysis. No catalyst was
employed for avoiding biocompatibility problems of the
material in applications aimed at tissue engineering.

The polymerization reaction of the samples was mon-
itored via DSC-50 Shimadzu equipment in the following
conditions: c.a. 10 mg of sample, N2 atmosphere (50 ml/
min), and heating range from 25 to 180�C at 5, 10,
15, and 20�C/min for all samples. The Mw of the PUs
was determined by size exclusion chromatography
(Perkin Elmer series 200 chromatography) under the fol-
lowing conditions: dimethylformamide with 1% of LiBr
(eluent), 10 mg/ml sample's concentration, 1 ml/min
flow rate, 10 μl injected volume, columns temperature of
35�C, and polystyrene (PS) standards for the calibration
curve.

2.3 | Artificial neural network and
surface response methodology

The ANN curves were fitted using the DSC experimental
data of the samples at the four heating rates. The follow-
ing fit conditions were used: 1 layer with 12 hidden
layers, 5 training repetitions, resilient backpropagation
with backtracking as the algorithm, and the sum of

squared errors as the error function (threshold of error
function 0.1). The activation function used was the recti-
fied linear unit (ReLU). All the ANN fitted curves were
used for SRM. Equation (1) describes the SRM approach
used; Y represents the predicted response, xi and xj are
parameter variations (x- and y-axis), β0 is the constant
coefficient, βi is the linear coefficient, and βij is the inter-
action coefficient. More details about these methods can
be found in the literature.[13,17,26]

Y ¼ β0þ
Xk

i¼1

βixiþ
Xk

i¼1

βiix
2
i þ

Xk

j¼1

βjxjþ
Xk

j¼1

βjjx
2
j

þ
Xk�1

i¼1

Xk

j¼i

βjixixj ð1Þ

2.4 | Predicting the degree of
polymerization

The nonisothermal curves at the four different heating
rates based on the ANN dataset were used to simulate
the degree of polyurethane reaction. The curves were
processed with Netzsch Thermokinetics, a Software Modu-
lus for the Kinetic Analysis of Thermal Measurements.[27]

The dependence between activation energy (Eα(T)) on
the conversion degree (α(T)) was assessed by the isocon-
versional methods of Flynn–Wall–Ozawa (FWO),[28]

Friedman (FR),[29] and Kissinger–Akahira–Sunose
(KAS).[30] A “Multivariate Non-linear Regression” pro-
gram evaluated the corresponding kinetic parameters
using a hybrid Marquardt–Levenberg approach. All theo-
retical curves are simultaneously compared with experi-
mental ones by using the F-test method. By using the
least-square method, the proper model is selected (using
the F critical value). The model proposed by Prout–
Tompkins (Bna mechanism) was elected for representing
the polymerization mechanism and to present the best
fit. The selection has a physical meaning since the syn-
thesis of urethane compounds depends on an isocyanate
and alcohol chemical groups' equilibrium with an auto-
catalytic nature (as previewed by the model). The simu-
lated curves were used to predict the isothermal
polymerization behavior. The conversion degree (α) dur-
ing the polymerization has been calculated with
Equation (2):

αDSC ¼ ΔHT

ΔHdyn
ð2Þ

where ΔHT is the heat released up to a temperature
T (obtained by integrating the calorimetric signal in this
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temperature range), and ΔHdyn is the total reaction heat
correlated with the full conversion of all reactive groups.
The α parameter was estimated as the mean value for
heat reaction attained dynamically at the various heating
rates.

3 | RESULTS AND DISCUSSION

The molar masses (Mw) of the materials obtained after
polymerization were 152,150, 178,251 and, 165,022 g/mol
for PU500, PU1000, and PU2000, respectively. The poly-
dispersity index (Mw/Mn) for all samples was ~1.59 with-
out gel formation for the PUs. On stoichiometric
amounts of isocyanate and OH groups, higher molar
mass PUs was obtained.[2] The autocatalysis phenome-
non occurs when the products catalyze the reaction. The
reaction progress for the samples was determined
through DSC analysis by measuring the exothermic
peaks in the heat flow rate curves. The DSC curves of the
PUs with different molar masses are presented in
Figure 1.

This polymerization process is quite slow compared
to different polyurethane systems, such as those compris-
ing aromatic diisocyanates, which can be explained by
considering thermodynamics aspects and the difference
in reactivity between aliphatic or aromatic chain isocya-
nates.[2,6,31] Besides the thermodynamic factor, the hard
segment's mobility and interactions and the system's vis-
cosity also control the phase structure formation.

The ANN modeling for the PU1000 thermal results at
distinct heating rates is shown in Figure 2. Since the
other samples (PU500 and PU2000) displayed very simi-
lar behavior, the fits are not illustrated. The symbol dots
represent the experimental results, while the solid lines
are the fits derived from the ANN mathematical
approach. As a first approximation, the results are

satisfactory, mainly for a practical application of polymer
properties. Despite a not perfect fit, the fitted peak practi-
cally coincides with maximum experimental tempera-
ture, which means that for some kinetic models that
consider the maximum reaction (e.g., Kissinger), the pre-
sent fit would already be satisfactory.

In Figure 3(A), the regression plot shows an excellent
fit. It means that the model presented a successful effect
of adding another variable to a model that already has
one or more independent values. In the residual plot
(Figure 3(D)), the residuals and the independent variable
are represented in the vertical and horizontal axes,
respectively. Since the residual results are randomly
scattered along the horizontal axis, a linear regression
model becomes suitable for treating the data. Finally,
cross-validation proved that statistical analysis results
would be generalized to an independent data set. This is
indicative of how precisely a predictive model will oper-
ate in practice.

We also recognized from a three-dimensional plane
that DSC behavior is predicted both by heating rate and
molar mass variation. Nonetheless, a well-trained ANN
contributes to developing a mechanistic understanding of
the material examined, considering it as a phenomeno-
logical approach. Figure 4 exhibits the SRM results from
the predicted ANN database, considering temperature (x-
axis) and heating rate (y-axis) parameters variation. It is
also possible to predict the thermal behavior curve from
different heating rates, not applied experimentally, but
with a high-reliability level.

An increase in the peak heating flow (z-axis) with the
heating rate is observed for all samples. On the other
hand, the heating flow area (z-axis) tends to decrease for
PU1000 (Figure 4(B)) and PU2000 (Figure 4(B)) with
exception of PU500, which increases the heat flow. This
behavior probably occurs due to the increase in the molar
mass and viscosity, which difficult a uniform distribution

FIGURE 1 Differential scanning calorimetry (DSC) curves at different heating rates of polyurethane (PU) samples synthesized from a

polyol of different molar masses (A) PU500, (B) PU1000, and (C) PU2000 [Color figure can be viewed at wileyonlinelibrary.com]
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of heat along the chains. This event is properly reported
in the bulk polymerization of PUs.[14,32] Also, the associa-
tion phenomena within OH groups by intramolecular
and intermolecular hydrogen interactions have a well-
known effect, which certainly influences the reactivity of
such groups toward isocyanate functions.[14,33] In stoi-
chiometric circumstances, the association phenomena
can proportionally occur for both conditions: with a
decrease of the macrodiol's molar mass or as a conse-
quence of the intramolecular hydrogen interactions.

The difference in the polymerization behavior is seen
in Figure 5, which shows the SRM results based on the
ANN data. The heating flow curves (z-axis) were
predicted based on temperature (x-axis) and molar mass
variation (y-axis) using Equation (1). The curves pres-
ented were simulated for 10�C/min (Figure 5(A)) and
20�C/min (Figure 5(B)) heating rates, but they can be
simulated for any other heating rate. For both heating
rates, the range variation of heating flow is more signifi-
cant for PU500, as mentioned earlier. There is a trend in

the peak displacement at higher temperatures for higher
molar masses, probably due to the direct relationship
between the peak reaction and the polyol molar mass.
Combining the ANN data set with the SRM model is cre-
ated the possibility of predicting heating flow curves for
different polyol molar mass values.

The heating flow curves simulated by combining the
ANN data set with the SRM model were used to calculate
the three PU's degree of reaction (Figure 6(A)). It is possible
to observe that the PU500 initiates the polymerization at
lower temperatures than the other samples. The values
obtained for the PU reaction kinetics are shown in Table 1.
The Bna model (used for describing the autocatalyzed reac-
tions) exhibited a strong correlation (close to unity), and
similar Eα(T) values compared to the kinetic models used
(FR, FWO, and KAS models). Considering the overlapping
between the data, it can be related that the combination of
the ANN and SRM, considering the autocatalytic model as
the reaction mechanism, adequately represents the poly-
merization kinetics of PU (Figure 6(B)).

FIGURE 2 Artificial neural network (ANN) fitting for the PU1000 thermal curves at the four different heating rates [Color figure can be

viewed at wileyonlinelibrary.com]
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As shown in Table 1, the Eα(T) remained practically
constant for PU500 and PU1000. Lower Eα(T) values were
obtained for PU2000. Eceiza et al.[14] also obtained compa-
rable rate constants for PUs with 775 and 1015 g/mol, pro-
duced from polycarbonate diols and 4,40-diphenylmethane
diisocyanate at the same temperature. These samples had
a rate constant lower than a sample with 1990 g/mol, con-
firming that the OH group's association phenomena
depend on the diol's molar mass and chemical structure.

Furthermore, these phenomena were more expressive for
polycarbonate diols with lower molar mass or higher
OH group concentration and higher significance for

polycarbonate diols with OH groups in chain ends of an
odd number of carbons atoms. The activation energy
decrease by the increase of the association phenomena. A
corresponding trend has been noted for the activation
energies obtained in the reaction between PCD and
HDI.[2] This suggests that the association phenomena can

FIGURE 3 (A) Regression plot for PU1000 at 15�C/min, (B) cross-validation root-MSE box plot, and (C–F) residual plot [Color figure
can be viewed at wileyonlinelibrary.com]
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improve OH groups' nucleophilicity by forming a reac-
tion complex with NCO groups or by reacting with the
complex itself, as reported in mechanisms catalyzed by
alcohol and urethane.[34]

Also, both molar mass and viscosity increase continu-
ously as such reactions proceed. The polymer molecules
may become insoluble above a critical chain length or
molar mass. The low molar mass byproducts would gradu-
ally accumulate in the system, inducing equilibrium to shift
toward the reactants. All these factors may influence the
polymerization rate considerably.[32] The rate at which
independent functional groups react for chain extending
from new condensed interunit linkages depends on three
distinct processes: one in which the groups diffuse into a
cage, another in which the groups spread separately, and a

third, in which the groups trapped in the cage react to form
a fresh condensed linkage. Therefore, considering a period
quite long to enable the diffusion of a pair of reactive
groups, collision frequency between two functional groups
will be higher for shorter polymer molecules.[35,36]

4 | CONCLUSIONS

The molar mass of the polyol directly influences the poly-
merization kinetics of polyurethanes. This influence is
studied in the present work using an ANN, and a SRM
approaches. Also, it was selected a proper kinetic model
(autocatalytic) to describe the experimental data. Never-
theless, in several situations, the models' residual error is

FIGURE 4 Surface response methodology (SRM) curve based on artificial neural network (ANN) dataset: (A) PU500, (B) PU1000, and

(C) PU2000 [Color figure can be viewed at wileyonlinelibrary.com]
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not acceptable in the whole process description. The pro-
posed methodology becomes a powerful approach to
address this kind of problem due to its lower residual
errors than those obtained in individual models. With the
combination of ANN and SRM, predicting the

calorimetric curves from different heating rates with a
high level of reliability was possible. The simulated data
were used to calculate the polyurethane's reaction kinet-
ics, and a remarkable agreement between the modeled
and experimental data was obtained. Also, it was possible

FIGURE 5 Surface response methodology (SRM) curve based on artificial neural network (ANN) dataset: (A) 10�C/min and (B) 20�C/
min [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 (A) Conversion in terms of temperature for the PU formulations (PU500, PU1000, and PU2000) and, (B) comparison

between the differential scanning calorimetry (DSC) experimental results and those mathematically treated by the Bna model for PU 2000

[Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Values of kinetic

parameters and statistical analysys by

f(α) = Bna

Sample E (KJ/mol) log A (1/s) n a r2 F test

PU500 46.94 4.28 1.494 0.4422 0.9857 1.00

PU1000 46.94 4.44 2.130 0.2905 0.9905 1.00

PU2000 49.39 4.20 1.204 0.3480 0.9870 1.00
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to prove that the reagents' molar mass directly influences
the polyurethanes thermal response, affecting the poly-
merization process, the enthalpy, and the degree of reac-
tion. The ANN proved to be an efficient tool device for
simulating and predicting the tested PU's thermal behav-
ior. ANN and SRM models allow excellent predictive
abilities for any measured property since many experi-
ments are previously performed.
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