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Abstract

Zinc oxide is an essential ingredient of many enzymes, sun screens, and ointments for
pain and itch relief. Its microcrystals are very efficient light absorbers in the UVA and
UVB region of spectra due to wide bandgap. Impact of zinc oxide on biological
functions depends on its morphology, particle size, exposure time, concentration, pH,
and biocompatibility. They are more effective against microorganisms such as Bacillus
subtilis, Bacillus megaterium, Staphylococcus aureus, Sarcina lutea, Escherichia
coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Pseudomonas vulgaris, Candida
albicans, and Aspergillus niger. Mechanism of action has been ascribed to the activation
of zinc oxide nanoparticles by light, which penetrate the bacterial cell wall via diffusion.
It has been confirmed from SEM and TEM images of the bacterial cells that zinc oxide
nanoparticles disintegrate the cell membrane and accumulate in the cytoplasm where
they interact with biomolecules causing cell apoptosis leading to cell death.

Background

Nanotechnology deals with the manufacture and application of materials with size of up
to 100 nm. They are widely used in a number of processes that include material science,
agriculture, food industry, cosmetic, medical, and diagnostic applications
[1,2,3,4,5,6,7,8,9,10]. Nanosize inorganic compounds have shown remarkable
antibacterial activity at very low concentration due to their high surface area to volume
ratio and unique chemical and physical features [11]. In addition, these particles are also
more stable at high temperature and pressure [12]. Some of them are recognized as
nontoxic and even contain mineral elements which are vital for human body [13]. It has
been reported that the most antibacterial inorganic materials are metallic nanoparticles
and metal oxide nanoparticles such as silver, gold, copper, titanium oxide, and zinc
oxide [14, 15].
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Zinc is an essential trace element for human system without which many enzymes such
as carbonic anhydrase, carboxypeptidase, and alcohol dehydrogenase become inactive,
while the other two members, cadmium and mercury belonging to the same group of
elements having the same electronic configuration, are toxic. It is essential for
eukaryotes because it modulates many physiological functions [16, 17]. Bamboo salt,
containing zinc, is used as herbal medicine for the treatment of inflammation by
regulating caspase-1 activity. Zinc oxide nanoparticles have been shown to reduce
mRNA expression of inflammatory cytokines by inhibiting the activation of NF-kB
(nuclear factor kappa B cells) [18].

Globally, bacterial infections are recognized as serious health issue. New bacterial
mutation, antibiotic resistance, outbreaks of pathogenic strains, etc. are increasing, and
thus, development of more efficient antibacterial agents is demand of the time. Zinc
oxide is known for its antibacterial properties from the time immemorial [19]. It had
been in use during the regime of Pharaohs, and historical records show that zinc oxide
was used in many ointments for the treatment of injuries and boils even in 2000 BC
[20]. It is still used in sun screen lotion, as a supplement, photoconductive material,
LED, transparent transistors, solar cells, memory devices [21, 22], cosmetics [23, 24],
and catalysis [25]. Although considerable amount of ZnO is produced every year, very
small quantity is used as medicine [26]. The US Food and Drug Administration has
recognized (21 CFR 182.8991) zinc oxide as safe [27]. It is characterized by
photocatalytic and photooxidizing properties against biochemicals [28].

Zinc oxide has been classified by EU hazard classification as N; R50-53 (ecotoxic).
Compounds of zinc are ecotoxic for mammals and plants in traces [29, 30]. Human
body contains about 2–3 g of zinc, and the daily requirement is 10–15 mg [29, 31]. No
report has demonstrated carcinogenicity, genotoxicity, and reproduction toxicity in
humans [29, 32]. However, zinc powder inhaled or ingested may produce a condition
called zinc fever, which is followed by chill, fever, cough, etc.

Morphology of zinc oxide nanoparticles depends on the process of synthesis. They may
be nanorods, nanoplates [33,34,35], nanospheres [36], nanoboxes [35], hexagonal,
tripods [37], tetrapods [38], nanowires, nanotubes, nanorings [39,40,41], nanocages, and
nanoflowers [42, 43]. Zinc oxide nanoparticles are more active against gram-positive
bacteria relative to other NPs of the same group of elements. Ready to eat food is more
prone to infection by Salmonella, Staphylococcus aureus, and E. coli which pose a great
challenge to food safety and quality. The antimicrobial compounds are incorporated in
the packed food to prevent them from damage. Antimicrobial packaging contains a
nontoxic material which inhibits or slows down the growth of microbes present in food
or packaging material [44]. An antimicrobial substance for human consumption must
possess the following properties.

1. a)

It should be nontoxic.

2. b)

It should not react with food or container.
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3. c)

It should be of good taste or tasteless.

4. d)

It should not have disagreeable smell.

Zinc oxide nanoparticle is one such inorganic metal oxide which fulfills all the above
requirements, and hence, it can safely be used as medicine, preservative in packaging,
and an antimicrobial agent [45, 46]. It easily diffuses into the food material, kill the
microbes, and prevent human being from falling ill. In accordance with the regulations
1935/2004/EC and 450/2009/EC of the European Union, active packaging is defined as
active material in contact with food with ability to change the composition of the food
or the atmosphere around it [47]. Therefore, it is commonly used as preservative and
incorporated in polymeric packaging material to prevent food material from damage by
microbes [48]. Zinc oxide nanoparticles have been used as an antibacterial substance
against Salmonella typhi and S. aureus in vitro. Of all the metal oxide nanoparticles
studied thus far, zinc oxide nanoparticles exhibited the highest toxicity against
microorganisms [49]. It has also been demonstrated from SEM and TEM images that
zinc oxide nanoparticles first damage the bacterial cell wall, then penetrate, and finally
accumulate in the cell membrane. They interfere with metabolic functions of the
microbes causing their death. All the characteristics of the zinc oxide nanoparticles
depend on their particle size, shape, concentration, and exposure time to the bacterial
cell. Further, biodistribution studies of zinc oxide nanoparticles have also been
examined. For instance, Wang et al. [50] have investigated the effect of long-term
exposure of zinc oxide nanoparticle on biodistribution and zinc metabolism in mice
over 3 to 35 weeks. Their results showed minimum toxicity to mice when they were
exposed to 50 and 500 mg/kg zinc oxide nanoparticle in diet. At higher dose of
5000 mg/kg, zinc oxide nanoparticle decreased body weight but increased the weight of
the pancreas, brain, and lung. Also, it increased the serum glutamic-pyruvic
transaminase activity and mRNA expression of zinc metabolism-related genes such as
metallothionein. Biodistribution studies showed the accumulation of sufficient quantity
of zinc in the liver, pancreas, kidney, and bones. Absorption and distribution of zinc
oxide nanoparticle/zinc oxide microparticles are largely dependent on the particle size.
Li et al. [51] have studied biodistribution of zinc oxide nanoparticles fed orally or
through intraperitoneal injection to 6 weeks old mice. No obvious adverse effect was
detected in zinc oxide nanoparticles orally treated mice in 14 days study. However,
intraperitoneal injection of 2.5 g/kg body weight given to mice showed accumulation of
zinc in the heart, liver, spleen, lung, kidney, and testes. Nearly ninefold increase in zinc
oxide nanoparticle in the liver was observed after 72 h. Zinc oxide nanoparticles have
been shown to have better efficiency in liver, spleen, and kidney biodistribution than in
orally fed mice. Since zinc oxide nanoparticles are innocuous in low concentrations,
they stimulate certain enzymes in man and plants and suppress diseases. Singh et al.
[52] have also been recently reviewed the biosynthesis of zinc oxide nanoparticle, their
uptake, translocation, and biotransformation in plant system.

https://nanoscalereslett.springeropen.com/articles/10.1186/s11671-018-2532-3#ref-CR45
https://nanoscalereslett.springeropen.com/articles/10.1186/s11671-018-2532-3#ref-CR46
https://nanoscalereslett.springeropen.com/articles/10.1186/s11671-018-2532-3#ref-CR47
https://nanoscalereslett.springeropen.com/articles/10.1186/s11671-018-2532-3#ref-CR48
https://nanoscalereslett.springeropen.com/articles/10.1186/s11671-018-2532-3#ref-CR49
https://nanoscalereslett.springeropen.com/articles/10.1186/s11671-018-2532-3#ref-CR50
https://nanoscalereslett.springeropen.com/articles/10.1186/s11671-018-2532-3#ref-CR51
https://nanoscalereslett.springeropen.com/articles/10.1186/s11671-018-2532-3#ref-CR52


In this review, we have attempted to consolidate all the information regarding zinc oxide
nanoparticles as antibacterial agent. The mechanism of interaction of zinc oxide
nanoparticles against a variety of microbes has also been discussed in detail.

Antimicrobial Activity of Zinc Oxide

Nanoparticles

It is universally known that zinc oxide nanoparticles are antibacterial and inhibit the
growth of microorganisms by permeating into the cell membrane. The oxidative stress
damages lipids, carbohydrates, proteins, and DNA [53]. Lipid peroxidation is obviously
the most crucial that leads to alteration in cell membrane which eventually disrupt vital
cellular functions [54]. It has been supported by oxidative stress mechanism involving
zinc oxide nanoparticle in Escherichia coli [55]. However, for bulk zinc oxide
suspension, external generation of H2O2 has been suggested to describe the anti-bacterial
properties [56]. Also, the toxicity of nanoparticles, releasing toxic ions, has been
considered. Since zinc oxide is amphoteric in nature, it reacts with both acids and
alkalis giving Zn2+ ions.

The free Zn2+ ions immediately bind with the biomolecules such as proteins and
carbohydrates, and all vital functions of bacteria cease to continue. The toxicity of zinc
oxide, zinc nanoparticles, and ZnSO4·7H2O has been tested (Table 1) against Vibrio
fischeri. It was found that ZnSO4·7H2O is six times more toxic than zinc oxide
nanoparticles and zinc oxide. The nanoparticles are actually dispersed in the solvent, not
dissolved, and therefore, they cannot release Zn2+ ions. The bioavailability of Zn2+ ions
is not always 100% and may invariably change with physiological pH, redox potential,
and the anions associated with it such as Cl− or SO4

2−.

Table 1 The toxicity (30-min EC50, EC20 and NOEC, and MIC) of metal oxide
aqueous suspensions CuSO4 and ZnSO4·7H2O to bacteria Vibrio fischeri [59]

Full size table

Solubility of zinc oxide (1.6–5.0 mg/L) in aqueous medium is higher than that of zinc
oxide nanoparticles (0.3–3.6 mg/L) in the same medium [57] which is toxic to algae and
crustaceans. Both nano-zinc oxide and bulk zinc oxide are 40–80-fold less toxic than
ZnSO4 against V. fischeri. The higher antibacterial activity of ZnSO4 is directly
proportional to its solubility releasing Zn2+ ions, which has higher mobility and greater
affinity [58] toward biomolecules in the bacterial cell due to positive charge on the
Zn2+ and negative charge on the biomolecules.
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Since zinc oxide and its nanoparticles have limited solubility, they are less toxic to the
microbes than highly soluble ZnSO4·7H2O. However, it is not essential for metal oxide
nanoparticles to enter the bacterial cell to cause toxicity [59]. Contact between
nanoparticles and the cell wall is sufficient to cause toxicity. If it is correct, then large
amounts of metal nanoparticles are required so that the bacterial cells are completely
enveloped and shielded from its environment leaving no chance for nutrition to be
absorbed to continue life process. Since nanoparticles and metal ions are smaller than
the bacterial cells, it is more likely that they disrupt the cell membrane and inhibit their
growth.

A number of nanosized metal oxides such as ZnO, CuO, Al2O3, La2O3, Fe2O3, SnO2, and
TiO2 have been shown to exhibit the highest toxicity against E. coli [49]. Zinc oxide
nanoparticles are externally used for the treatment of mild bacterial infections, but the
zinc ion is an essential trace element for some viruses and human beings which increase
enzymatic activity of viral integrase [45, 60, 61]. It has also been supported by an
increase in the infectious pancreatic necrosis virus by 69.6% when treated with 10 mg/L
of Zn [46]. It may be due to greater solubility of Zn ions relative to ZnO alone. The
SEM and TEM images have shown that zinc oxide nanoparticles damage the bacterial
cell wall [55, 62] and increase permeability followed by their accumulation in E.
coli preventing their multiplication [63].

In the recent past, antibacterial activity of zinc oxide nanoparticle has been investigated
against four known gram-positive and gram-negative bacteria, namely Staphylococcus
aureus, E. coli, Salmonella typhimurium, and Klebsiella pneumoniae. It was observed
that the growth-inhibiting dose of the zinc oxide nanoparticles was 15 μg/ml, although
in the case of K. pneumoniae, it was as low as 5 μg/ml [63, 64]. It has been noticed that
with increasing concentration of nanoparticles, growth inhibition of microbes increases.
When they were incubated over a period of 4–5 h with a maximum concentration of
zinc oxide nanoparticles of 45 μg/ml, the growth was strongly inhibited. It is expected
that if the incubation time is increased, the growth inhibition would also increase
without much alteration in the mechanism of action [63].

It has been reported that the metal oxide nanoparticles first damage the bacterial cell
membrane and then permeate into it [64]. It has also been proposed that the release of
H2O2 may be an alternative to anti-bacterial activity [65]. This proposal, however,
requires experimental proof because the mere presence of zinc oxide nanoparticle is not
enough to produce H2O2. Zinc nanoparticles or zinc oxide nanoparticles of extremely
low concentration cannot cause toxicity in human system. Daily intake of zinc via food
is needed to carry out the regular metabolic functions. Zinc oxide is known to protect
the stomach and intestinal tract from damage by E. coli [65]. The pH in the stomach
varies between 2 to 5, and hence, zinc oxide in the stomach can react with acid to
produce Zn2+ ions. They can help in activating the enzyme carboxy peptidase, carbonic
anhydrase, and alcohol dehydrogenase which help in the digestion of carbohydrate and
alcohol. Premanathan et al. [66] have reported the toxicity of zinc oxide nanoparticles
against prokaryotic and eukaryotic cells. The MIC of zinc oxide nanoparticles against E.
coli, Pseudomonas aeruginosa, and S. aureus were found to be 500 and 125 μg/ml,
respectively. Two mechanisms of action have been proposed for the toxicity of zinc
oxide nanoparticles, namely (1) generation of ROS and (2) induction of apoptosis.
Metal oxide nanoparticles induce ROS production and put the cells under oxidative
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stress causing damage to cellular components, i.e., lipids, proteins, and DNA
[67,68,69]. Zinc oxide nanoparticles, therefore, induce toxicity through apoptosis. They
are relatively more toxic to cancer cells than normal cells, although they cannot
distinguish between them.

Recently, Pati et al. [70] have shown that zinc oxide nanoparticles disrupt bacterial cell
membrane integrity, reduce cell surface hydrophobicity, and downregulate the
transcription of oxidative stress-resistance genes in bacteria. They enhance intracellular
bacterial killing by inducing ROS production. These nanoparticles disrupt biofilm
formation and inhibit hemolysis by hemolysin toxin produced by pathogens.
Intradermal administration of zinc oxide nanoparticles was found to significantly reduce
the skin infection and inflammation in mice and also improved infected skin
architecture.

Solubility and Concentration-Dependent Activity of Zinc Oxide
Nanoparticle

Nanoparticles have also been used as a carrier to deliver therapeutic agents to treat
bacterial infection [1, 9]. Since zinc oxide nanoparticles up to a concentration of
100 μg/ml are harmless to normal body cells, they can be used as an alternative to
antibiotics. It was found that 90% bacterial colonies perished after exposing them to a
dose of 500–1000 μg/ml of zinc oxide nanoparticles only for 6 h. Even the
drug-resistant S. aureus, Mycobacterium smegmatis, and Mycobacterium bovis when
treated with zinc oxide nanoparticles in combination with a low dose of
anti-tuberculosis drug, rifampicin (0.7 μg/ml), a significant reduction in their growth
was observed. These pathogens were completely destroyed when incubated for 24 h
with 1000 μg/ml of zinc oxide nanoparticles. It is, therefore, concluded that if the same
dose is repeated, the patient with such infective diseases may be completely cured. It
was also noted that the size of zinc oxide nanoparticles ranging between 50 and 500 nm
have identical effect on bacterial growth inhibition.

Cytotoxicity of zinc oxide has been studied by many researchers in a variety of
microbes and plant systems [71,72,73,74]. Toxicity of zinc oxide nanoparticles is
concentration and solubility dependent. It has been shown that maximum exposure
concentration of zinc oxide (125 mg/l) suspension released 6.8 mg/l of Zn2+ ions.
Toxicity is a combined effect of zinc oxide nanoparticles and Zn2+ ions released in the
aqueous medium. However, minimal effect of metal ions was detected which suggests
that the bacterial growth inhibition is mainly due to interaction of zinc oxide
nanoparticles with microorganisms. The cytotoxic effect of a particular metal oxide
nanoparticle is species sensitive which is reflected by the growth inhibition zone for
several bacteria [75].

It has been suggested that growth inhibition of bacterial cells occurs mainly by Zn2+ ions
which are produced by extracellular dissolution of zinc oxide nanoparticles [76]. Cho et
al. [77] have concluded from their studies on rats that zinc oxide nanoparticles remain
intact at around neutral or biological pH but rapidly dissolve under acidic conditions
(pH 4.5) in the lysosome of the microbes leading to their death. This is true because in
acidic condition, zinc oxide dissolves and Zn2+ ions are produced, which bind to the
biomolecules inside the bacterial cell inhibiting their growth.
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The zinc oxide nanoparticles have been shown to be cytotoxic to different primary
immune-competent cells. The transcriptomics analysis showed that nanoparticles had a
common gene signature with upregulation of metallothionein genes ascribed to the
dissolution of the nanoparticles [78]. However, it could not be ascertained if the
absorbed zinc was Zn2+ or zinc oxide or both, although smaller sized zinc oxide
nanoparticles have greater concentration in the blood than larger ones (19 and
> 100 nm). The efficiency of zinc oxide nanoparticles depends mainly on the medium of
reaction to form Zn2+ and their penetration into the cell.

Chiang et al. [79] have reported that dissociation of zinc oxide nanoparticles results in
destruction of cellular Zn homeostasis. The characteristic properties of nanoparticles
and their impact on biological functions are entirely different from those of the bulk
material [80]. Aggregation of nanoparticles influences cytotoxicity of macrophages, and
their concentration helps in modulation of nanoparticle aggregation. Low concentration
of zinc oxide nanoparticles is ineffective, but at higher concentration (100 μg/ml), they
exhibited cytotoxicity which varies from one pathogen to another.

The inadvertent use of zinc oxide nanoparticles may sometime adversely affect the
living system. Their apoptosis and genotoxic potential in human liver cells and cellular
toxicity has been studied. It was found that a decrease in liver cell viability occurs when
they are exposed to 14–20 μg/ml of zinc oxide nanoparticles for 12 h. It also induced
DNA damage by oxidative stress. Sawai et al. [56] have demonstrated that ROS
generation is directly proportional to the concentration of zinc oxide powder. ROS
triggered a decrease in mitochondria membrane potential leading to apoptosis [81].
Cellular uptake of nanoparticles is not mandatory for cytotoxicity to occur.

Size-Dependent Antibacterial Activity of Zinc Oxide Nanoparticles

In a study, Azam et al. [82] have reported that the antimicrobial activity against both
gram-negative (E. coli and P. aeruginosa) and gram-positive (S. and Bacillus subtilis)
bacteria increased with increase in surface-to-volume ratio due to a decrease in particle
size of zinc oxide nanoparticles. Moreover, in this investigation, zinc oxide
nanoparticles have shown maximum (25 mm) bacterial growth inhibition against B.
subtilis (Fig. 1).

Fig. 1

Antibacterial activity and/or zone of inhibition produced by zinc oxide
nanoparticles against gram-positive and gram-negative bacterial strains
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namely a Escherichia coli, b Staphylococcus aureus, c Pseudomonas aeruginosa,
and d Bacillus subtilis [82]

Full size image

It has been reported that the smaller size of zinc oxide nanoparticles exhibits greater
antibacterial activity than microscale particles [83]. For instance, Au55 nanoparticles of
1.4-nm size have been demonstrated to interact with the major grooves of DNA which
accounts for its toxicity [84]. Although contradictory results have been reported, many
workers showed positive effect of zinc oxide nanoparticles on bacterial cells. However,
Brayner et al. [63] from TEM images have shown that zinc oxide nanoparticle of
10–14 nm were internalized (when exposed to microbes) and damaged the bacterial cell
membrane. It is also essential that the zinc/zinc oxide nanoparticles must not be toxic to
human being since they are toxic to T cells above 5 mM [85] and to neuroblastoma cells
above 1.2 mM [86]. Nair et al. [87] have exclusively explored the size effect of zinc
oxide nanoparticles on bacterial and human cell toxicity. They have studied the
influence of zinc oxide nanoparticles on both gram-positive and gram-negative bacteria
and osteoblast cancer cell lines (MG-63).

It is known that antibacterial activity of zinc oxide nanoparticle is inversely proportional
to their size and directly proportional to their concentration [88]. It has also been
noticed that it does not require UV light for activation; it functions under normal or
even diffused sunlight. Cytotoxic activity perhaps involves both the production of ROS
and accumulation of nanoparticles in the cytoplasm or on the outer cell membrane.
However, the production of H2O2 and its involvement in the activation of nanoparticles
cannot be ignored. Raghupathi et al. [88] have synthesized zinc oxide nanoparticles
from different zinc salts and observed that nanoparticles obtained from Zn(NO3)2 were
smallest in size (12 nm) and largest in surface area (90.4). Authors have shown that the
growth inhibition of S. aureus at a concentration of 6 mM of zinc oxide nanoparticles is
size dependent. It has also been indicated from the viable cell determination during the
exposure of bacterial cells to zinc oxide nanoparticles that the number of cells recovered
decreased significantly with decrease in size of zinc oxide nanoparticles. Jones et al.
[89] have shown that zinc oxide nanoparticles of 8-nm diameter inhibited the growth
of S. aureus, E. coli, and B. subtilis. Zinc oxide nanoparticles ranging between 12 and
307 nm were selected and confirmed the relationship between antibacterial activity and
their size. Their toxicity to microbes has been ascribed to the formation of Zn2+ ions
from zinc oxide when it is suspended in water and also to some extent to a slight change
in pH. Since Zn2+ ions are scarcely released from zinc oxide nanoparticles, the
antibacterial activity is mainly owing to smaller zinc oxide nanoparticles. When the size
is 12 nm, it inhibits the growth of S. aureus, but when the size exceeds 100 nm, the
inhibitory effect is minimal [89].

Shape, Composition, and Cytotoxicity of Zinc Oxide Nanoparticles

Zinc oxide nanoparticles have shown cytotoxicity in concentration-dependent manner
and type of cells exposed due to different sensitivity [90, 91]. Sahu et al. [90] have
highlighted the difference of cytotoxicity between particle size and different sensitivity
of cells toward the particles of the same composition. In another recent study, Ng et al.
[91] examined the concentration-dependent cytotoxicity in human lung MRC5 cells.
Authors have reported the uptake and internalization of zinc oxide nanoparticles into the
human lung MRC5 cells by using TEM investigation. These particles were noticed in
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the cytoplasm of the cells in the form of electron dense clusters, which are further
observed to be enclosed by vesicles, while zinc oxide nanoparticles were not found in
untreated control cells. Papavlassopoulos et al. [92] have synthesized zinc oxide
nanoparticle tetrapods by entirely a novel route known as “Flame transport synthesis
approach”. Tetrapods have different morphology compared to the conventionally
synthesized zinc oxide nanoparticles. Their interaction with mammalian fibroblast cells
in vitro has indicated that their toxicity is significantly lower than those of the spherical
zinc oxide nanoparticles. Tetrapods exhibited hexagonal wurtzite crystal structure with
alternating Zn2+ and O2− ions with three-dimensional geometry. They block the entry of
viruses into living cells which is further enhanced by precisely illuminating them with
UV radiation. Since zinc oxide tetrapods have oxygen vacancies in their structure,
the Herpes simplex viruses are attached via heparan sulfate and denied entry into body
cells. Thus, they prevent HSV-1 and HSV-2 infection in vitro. Zinc oxide tetrapods may
therefore be used as prophylactic agent against these viral infections. The cytotoxicity
of zinc oxide nanoparticles also depends on the proliferation rate of mammalian cells
[66, 93]. The surface reactivity and toxicity may also be varied by controlling the
oxygen vacancy in zinc oxide tetrapods. When they are exposed to UV light, the oxygen
vacancy in tetrapods is readily increased. Alternatively, the oxygen vacancy can be
decreased by heating them in oxygen-rich environment. Thus, it is the unique property
of zinc oxide tetrapods that can be changed at will which consequently alter their
antimicrobial efficiency.

Animal studies have indicated an increase in pulmonary inflammation, oxidative stress,
etc. on respiratory exposure to nanoparticles [94]. Yang et al. [95] have investigated the
cytotoxicity, genotoxicity, and oxidative stress of zinc oxide nanoparticles on primary
mouse embryo fibroblast cells. It was observed that zinc oxide nanoparticles induced
significantly greater cytotoxicity than that induced by carbon and SiO2 nanoparticles. It
was further confirmed by measuring glutathione depletion, malondialdehyde
production, superoxide dismutase inhibition, and ROS generation. The potential
cytotoxic effects of different nanoparticles have been attributed to their shape.

Polymer-Coated Nanoparticles

Many bacterial infections are transmitted by contact with door knobs, key boards, water
taps, bath tubs, and telephones; therefore, it is essential to develop and coat such
surfaces with inexpensive advanced antibacterial substances so that their growth is
inhibited. It is important to use such concentrations of antibacterial substances that they
may kill the pathogens but spare the human beings. It may happen only if they are
coated with a biocompatible hydrophilic polymer of low cost. Schwartz et al. [96] have
reported the preparation of a novel antimicrobial composite material hydrogel by
mixing a biocompatible poly (N-isopropylacrylamide) with zinc oxide nanoparticles.
The SEM image of the composite film showed uniform distribution of zinc oxide
nanoparticles. It exhibited antibacterial activity against E. coli at a very low zinc oxide
concentration (1.33 mM). Also, the coating was found to be nontoxic toward
mammalian cell line (N1H/3T3) for a period of 1 week. Zinc oxide/hydrogel
nanocomposite may safely be used as biomedical coating to prevent people from
contracting bacterial infections.

Although zinc oxide nanoparticles are stable, they have been further stabilized by
coating them with different polymers such as polyvinyl pyrolidone (PVP), polyvinyl
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alcohol (PVA), poly (α, γ, L-glutamic acid) (PGA), polyethylene glycol (PEG), chitosan,
and dextran [97, 98]. The antibacterial activity of engineered zinc oxide nanoparticles
was examined against gram-negative and gram-positive pathogens, namely E.
coli and S. aureus and compared with commercial zinc oxide powder. The
polymer-coated spherical zinc oxide nanoparticles showed maximum bacterial cell
destruction compared to bulk zinc oxide powder [99]. Since nanoparticles coated with
polymers are less toxic due to their low solubility and sustained release, their
cytotoxicity can be controlled by coating them with a suitable polymer.

Effect of Particle Size and Shape of Polymer-Coated Nanoparticles on
Antibacterial Activity

E. coli and S. aureus exposed to different concentrations of poly ethylene glycol
(PEG)-coated zinc oxide nanoparticles (1–7 mM) of varying size (401 nm–1.2 μm)
showed that the antimicrobial activity increases with decreasing size and increasing
concentration of nanoparticles. However, the effective concentration in all these cases
was above 5 mM. There occurs a drastic change in cell morphology of E. coli surface
which can be seen from the SEM images of bacteria before and after their exposure to
zinc oxide nanoparticles [84]. It has been nicely demonstrated by Nair et al. [87] that
PEG-capped zinc oxide particles and zinc oxide nanorods are toxic to human osteoblast
cancer cells (MG-63) at concentration above 100 μM. The PEG starch-coated
nanorods/nanoparticles do not damage the healthy cells.

In Vivo and In Vitro Antimicrobial Activity for Wound Dressing

Of all natural and synthetic wound dressing materials, the chitosan hydrogel
microporous bandages laced with zinc oxide nanoparticles developed by Kumar et al.
[100] are highly effective in treating burns, wounds, and diabetic foot ulcers. The
nanoparticles of approximately 70–120 nm are dispersed on the surface of the bandage.
The degradation products of chitosan were identified as D-glucosamine and
glycosamine glycan. They are nontoxic to the cells because they are already present in
our body for the healing of injury. The wound generally contains P. aeruginosa, S.
intermedicus, and S. hyicus which were also identified from the swab of mice wound
and successfully treated with chitosan zinc oxide bandage in about 3 weeks [100].

Effect of Doping on Toxicity of Zinc Oxide Nanoparticles

Doping of zinc oxide nanoparticles with iron reduces the toxicity. The concentration of
Zn2+ and zinc oxide nanoparticles is also an important factor for toxicity. The
concentration that reduced 50% viability in microbial cells exposed to nano- and
microsize zinc oxide is very close to the concentration of Zn2+ that induced 50%
reduction in viability in Zn2+-treated cells [101, 102].

Coating of zinc oxide nanoparticles with mercaptopropyl trimethoxysilane or
SiO2 reduces their cytotoxicity [103]. On the contrary, Gilbert et al. [104] showed that in
BEAS-2B cells, uptake of zinc oxide nanoparticles is the main mechanism of zinc
accumulation. Also, they have suggested that zinc oxide nanoparticles dissolve
completely generating Zn2+ ions which are bonded to biomolecules of the target cells.
However, the toxicity of zinc oxide nanoparticles depends on the uptake and their
subsequent interaction with target cells.
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Interaction Mechanism of Zinc Oxide

Nanoparticles

Nanoparticles may be toxic to some microorganisms, but they may be essential nutrients
to some of them [55, 105]. Nanotoxicity is essentially related to the microbial cell
membrane damage leading to the entry of nanoparticles into the cytoplasm and their
accumulation [55]. The impact of nanoparticles on the growth of bacteria and viruses
largely depends on particle size, shape, concentration, agglomeration, colloidal
formulation, and pH of the media [106,107,108]. The mechanism of antimicrobial
activity of zinc oxide nanoparticles has been depicted in Fig. 2.

Fig. 2

Mechanisms of zinc oxide nanoparticle antimicrobial activity

Full size image

Zinc oxide nanoparticles are generally less toxic than silver nanoparticles in a broad
range of concentrations (20 to 100 mg/l) with average particle size of 480 nm
[55, 62, 63]. Metal oxide nanoparticles damage the cell membrane and DNA
[63, 109,110,111] of microbes via diffusion. However, the production of ROS through
photocatalysis causing bacterial cell death cannot be ignored [112]. UV-Vis spectrum of
zinc oxide nanoparticle suspension in aqueous medium exhibits peaks between 370 and
385 nm [113]. It has been shown that it produces ROS (hydroxyl radicals, superoxides,
and hydrogen peroxide) in the presence of moisture which ostensibly react with
bacterial cell material such as protein, lipids, and DNA, eventually causing apoptosis.
Xie et al. [114] have examined the influence of zinc oxide nanoparticles
on Campylobacter jejuni cell morphology using SEM images (Fig. 3). After a 12-h
treatment (0.5 mg/ml), C. jejuni was found to be extremely sensitive and cells
transformed from spiral shape to coccoid forms. SEM studies showed the ascendency of
coccoid forms in the treated cells and display the formation of irregular cell surfaces and
cell wall blebs (Fig. 3a). Moreover, these coccoid cells remained intact and possessed
sheathed polar flagella. However, SEM image of the untreated cells clearly showed
spiral shapes (Fig. 3b). In general, it has been demonstrated from SEM and TEM
images of bacterial cells treated with zinc oxide nanoparticles that they get ruptured and,
in many cases, the nanoparticles damage the cell wall forcing their entry into it
[114, 115].

Fig. 3
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SEM images of Campylobacter jejuni. a Untreated cells from the same growth
conditions were used as a control. b C. jejuni cells in the mid-log phase of growth
were treated with 0.5 mg/ml of zinc oxide nanoparticles for 12 h under
microaerobic conditions [114]

Full size image

Zinc oxide nanoparticles have high impact on the cell surface and may be activated
when exposed to UV-Vis light to generate ROS (H2O2) which permeate into the cell
body while the negatively charged ROS species such as O2

2− remain on the cell surface
and affect their integrity [116, 117]. Anti-bacterial activity of zinc oxide nanoparticles
against many other bacteria has also been reported [1, 5, 114, 115]. It has been shown
from TEM images that the nanoparticles have high impact on the cell surface (Fig. 4).

Fig. 4
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a TEM images of untreated normal Salmonella typhimurium cells. b Effects of
nanoparticles on the cells (marked with arrows). c, d Micrograph of deteriorated
and ruptured S. typhimurium cells treated with zinc oxide nanoparticles [115]

Full size image

Sinha et al. [118] have also shown the influence of zinc oxide nanoparticles and silver
nanoparticles on the growth, membrane structure, and their accumulation in cytoplasm
of (a) mesophiles: Enterobacter sp. (gram negative) and B. subtilis (gram positive) and
(b) halophiles: halophilic bacterium sp. (gram positive) and Marinobacter sp. (gram
negative). Nanotoxicity of zinc oxide nanoparticles against halophilic gram-negative
Marinobacter species and gram-positive halophilic bacterial species showed 80%
growth inhibition. It was demonstrated that zinc oxide nanoparticles below 5 mM
concentration are ineffective against bacteria. The bulk zinc oxide also did not affect the
growth rate and viable counts, although they showed substantial decrease in these
parameters. Enterobacter species showed dramatic alterations in cell morphology and
reduction in size when treated with zinc oxide.

TEM images shown by Akbar and Anal [115] revealed the disrupted cell membrane and
accumulation of zinc oxide nanoparticles in the cytoplasm (Fig. 4) which was further
confirmed by FTIR, XRD, and SEM. It has been suggested that Zn2+ ions are attached to
the biomolecules in the bacterial cell via electrostatic forces. They are actually
coordinated with the protein molecules through the lone pair of electrons on the
nitrogen atom of protein part. Although there is significant impact of zinc oxide
nanoparticles on both the aquatic and terrestrial microorganisms and human system, it is
yet to be established whether it is due to nanoparticles alone or is a combined effect of
the zinc oxide nanoparticles and Zn2+ ions [55, 106, 109, 119]. Antibacterial influence of
metal oxide nanoparticles includes its diffusion into the bacterial cell, followed by
release of metal ions and DNA damage leading to cell death [63, 109,110,111]. The
generation of ROS through photocatalysis is also a reason of antibacterial activity
[62, 112]. Wahab et al. [120] have shown that when zinc oxide nanoparticles are
ingested, their surface area is increased followed by increased absorption and interaction
with both the pathogens and the enzymes. Zinc oxide nanoparticles can therefore be
used in preventing the biological system from infections. It is clear from TEM images
(Fig. 5a, b) of E. coli incubated for 18 h with MIC of zinc oxide nanoparticles that they
had adhered to the bacterial cell wall. The outer cell membrane was ruptured leading to
cell lysis. In some cases, the cell cleavage of the microbes has not been noticed, but the
zinc oxide nanoparticles can yet be seen entering the inner cell wall (Fig. 5c, d). As a
consequence of it, the intracellular material leaks out leading to cell death, regardless of
the thickness of bacterial cell wall.

Fig. 5
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TEM images of Escherichia coli (a), zinc oxide nanoparticles with E. coli at different
stages (b and inset), Klebsiella pneumoniae (c), and zinc oxide nanoparticles
with K. pneumoniae (d and inset) [120]

Full size image

Mechanism of interaction of zinc oxide nanoparticles with bacterial cells has been
outlined below [120]. Zinc oxide absorbs UV-Vis light from the sun and splits the
elements of water.

Dissolved oxygen molecules are transformed into superoxide, O2
−, which in turn reacts

with H+ to generate HO2 radical and after collision with electrons produces hydrogen
peroxide anion, HO2

−. They subsequently react with H+ ions to produce H2O2.
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It has been suggested that negatively charged hydroxyl radicals and superoxide ions
cannot penetrate into the cell membrane. The free radicals are so reactive that they
cannot stay in free and, therefore, they can either form a molecule or react with a
counter ion to give another molecule. However, it is true that zinc oxide can absorb sun
light and help in cleaving water molecules which may combine in many ways to give
oxygen. Mechanism of oxygen production in the presence of zinc oxide nanoparticles
still needs experimental evidence.

Zinc oxide at a dose of 5 μg/ml has been found to be highly effective for all the
microorganisms which can be taken as minimum inhibitory dose.

Conclusions

Zinc is an indispensable inorganic element universally used in medicine, biology, and
industry. Its daily intake in an adult is 8–15 mg/day, of which approximately
5–6 mg/day is lost through urine and sweat. Also, it is an essential constituent of bones,
teeth, enzymes, and many functional proteins. Zinc metal is an essential trace element
for man, animal, plant, and bacterial growth while zinc oxide nanoparticles are toxic to
many fungi, viruses, and bacteria. People with inherent genetic deficiency of soluble
zinc-binding protein suffer from acrodermatitis enteropathica, a genetic disease
indicated by python like rough and scaly skin. Although conflicting reports have been
received about nanoparticles due to their inadvertent use and disposal, some metal oxide
nanoparticles are useful to men, animals, and plants. The essential nutrients become
harmful when they are taken in excess. Mutagenic potential of zinc oxide has not been
thoroughly studied in bacteria even though DNA-damaging potential has been reported.
It is true that zinc oxide nanoparticles are activated by absorption of UV light without
disturbing the other rays. If zinc oxide nanoparticles produce ROS, they can damage the
skin and cannot be used as sun screen. Antibacterial activity may be catalyzed by
sunlight, but hopefully, it can prevent the formation of ROS. Zinc oxide nanoparticles
and zinc nanoparticles coated with soluble polymeric material may be used for treating
wounds, ulcers, and many microbial infections besides being used as drug carrier in
cancer therapy. It has great potential as a safe antibacterial drug which may replace
antibiotics in future. Application of zinc oxide nanoparticles in different areas of
science, medicine, and technology suggests that it is an indispensable substance which
is equally important to man and animals. However, longtime exposure with higher
concentration may be harmful to living system.
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