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We present research progress made in developing copper/

carbon nanotube composites (Cu/CNT) to fulfil a growing

demand for lighter copper substitutes with superior electrical,

thermal and mechanical performances. Lighter alternatives

to heavy copper electrical and data wiring are needed in

automobiles and aircrafts to enhance fuel efficiencies. In

electronics, better interconnects and thermal management

components than copper with higher current- and heat-

stabilities are required to enable device miniaturization with

increased functionality. Our literature survey encouragingly

indicates that Cu/CNT performances (electrical, thermal and

mechanical) reported so far rival that of Cu, proving the

material’s viability as a Cu alternative. We identify two grand

challenges to be solved for Cu/CNT to replace copper in

real-life applications. The first grand challenge is to fabricate

Cu/CNT with overall performances exceeding that of copper.

To address this challenge, we propose research directions to

fabricate Cu/CNT closer to ideal composites theoretically

predicted to surpass Cu performances (i.e. those containing
uniformly distributed Cu and individually aligned CNTs with
beneficial CNT–Cu interactions). The second grand challenge is

to industrialize and transfer Cu/CNT from lab bench to

real-life use. Toward this, we identify and propose strategies

to address market-dependent issues for niche/mainstream

applications. The current best Cu/CNT performances already

qualify for application in niche electronic device markets as

high-end interconnects. However, mainstream Cu/CNT

application as copper replacements in conventional electronics

and in electrical/data wires are long-term goals, needing

inexpensive mass-production by methods aligned with existing

industrial practices. Mainstream electronics require cheap

CNT template-making and electrodeposition procedures, while

data/electrical cables require manufacture protocols based

on co-electrodeposition or melt-processing. We note (with

examples) that initiatives devoted to Cu/CNT manufacturing
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for both types of mainstream applications are underway. With sustained research on Cu/CNT and

accelerating its real-life application, we expect the successful evolution of highly functional,

efficient, and sustainable next-generation electrical and electronics systems.
alsocietypublishing.org
R.Soc.open

sci.5:180814
1. Introduction
Copper is an indispensable material in our modern electricity- and electronics-driven society. It is the

most electrically conducting non-precious metal (5.8 � 105 S cm21 at 278C) [1] and the best thermal

conductor among metals (401 W m21 K21 at 278C) [2]. Further, copper has a high current-carrying

capacity [3], is strong, ductile, workable, and resistant to corrosion and creeping [4]. This combination

of stellar attributes makes copper the material of choice for a range of applications. Due to its

exceptional electrical properties, copper is used in electrical power cables and wiring, generators,

motors, transformers, data and phone wires, and as connectors in electronics. As a superior heat

transporter, copper is used as heat-sinks in electronics and heat exchange equipment, such as vehicle

radiators. According to the Copper Alliance [5], ‘one tonne of copper brings functionality in 40 cars,

powers 60 000 mobile phones, enables operations in 400 computers, and distributes electricity to 30

homes’. As a robust durable metal, copper dominates industrial components, such as bearings, gears

and turbine blades. However, copper is heavy (density 8.9 g cm23 [2]) and soft. In electronics, copper

interconnects disintegrate at high currents and delaminate from Si chips due to thermal expansion

arising from heat build-up [6]. This leads to device failure, which is exacerbated in downsized

interconnects and high-power devices.

Next-generation macro and microscale applications aiming for higher functionality, efficiency and

sustainability demand materials outperforming copper. There is a growing need to replace heavy

copper electrical and data wiring in vehicles with lighter alternatives for improved fuel efficiency. An

average mid-size automobile contains about 22.5 kg of copper, while electric and hybrid vehicles

could contain higher levels of copper [4]. Trains and commercial aircraft contain a few tons of copper

[4]. Replacing approximately 2 tons of Cu wiring in a commercial aircraft with a material two-thirds

of the weight translates to 25 000 tons of fuel savings and 78 000 tons of CO2 emission cuts per

year [7] (https://www.lufthansagroup.com/fileadmin/downloads/en/responsibility/balance-2017-

epaper/#0 (accessed 26 April 2018)). The electronics industry on the other hand requires interconnects

with higher current and heat stabilities and better heat-sinks than copper to keep up with rapidly

miniaturizing devices of growing complexity and power consumption [8].

Cu/carbon nanotube (CNT) composites that merge copper with CNTs are touted to fulfil the

growing need for Cu substitutes [8–17]. CNTs are expected to play two roles in Cu/CNT. (i) Made of

carbon, CNTs act as weight reducers, rendering the composites lighter. (ii) CNTs could transmit their

own exceptional nanoscale multifunctional properties to Cu to yield composites with superior

performances. It is well known that individual CNTs are strong, ballistically transport electrons and

are excellent thermal conductors [18,19]. Indeed, CNT addition to Cu is reported to lead to improved

mechanical, electrical and thermal properties [8–17], demonstrating the promise of Cu/CNT.

CNT macromaterials and other metal-matrix/CNT composites (e.g. Al/CNT) are additionally

explored prospective Cu alternatives besides Cu/CNT. However, these materials are unlikely to match

the promise of Cu/CNT, specifically in applications requiring high electrical conductivities. Individual

CNTs are nanoscopic and too small for practical application, although they surpass copper

performances. More practically useful macromaterials composed of CNT assemblies have been

fabricated but their performances are inadequate. For instance, CNT macromaterial electrical

conductivities are at least an order of magnitude lower than that of copper, limiting their practical

application [18,19]. In addition, CNT macromaterials also present issues with regard to integration

into existing electrical and electronics systems. Standard joining methods (soldering, crimping, etc.)

are inapplicable to the purely carbon-based nanotube assemblies. Among metal-matrix/CNT

composites prevalently researched, Al/CNT composites compete closely with Cu/CNT as Al is

lighter and cheaper than copper. However, by itself, Aluminium has a lower melting point and higher

propensity for oxidation than copper, rendering Cu-based composites more promising, especially for

applications requiring thermal stability [2,20].

Due to Cu/CNT’s unmatched promise and potential impact as a Cu alternative, research interest on

these materials from both academic and industrial communities has been increasing. Over the years, the

number of publications and their citations on Cu/CNT development has steadily increased (figure 1). On

https://www.lufthansagroup.com/fileadmin/downloads/en/responsibility/balance-2017-epaper/%230
https://www.lufthansagroup.com/fileadmin/downloads/en/responsibility/balance-2017-epaper/%230
https://www.lufthansagroup.com/fileadmin/downloads/en/responsibility/balance-2017-epaper/%230
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Figure 1. Publication trends of peer-reviewed articles on CNT – Cu composites (source: Web of Science, search terms: CNT-copper
composite and Carbon-nanotube copper composite).
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account of the research community’s sustained interest in Cu/CNT, extensive review articles have been

published at regular intervals [8–17]. However, a unified view on the field’s development so far and its

likely future course are missing. This mini-review aims to present a cohesive picture of Cu/CNT research

progress to date to determine the material’s real ability to substitute copper (§2). Further, we will

pinpoint challenges and solutions to enable Cu/CNT’s real-world application (§3).
2. Research trends and milestones
Two major approaches have been developed for Cu/CNT fabrication—(1) powder-processing and (2)

electrochemical deposition (figure 2). Powder-processing (approach 1) usually involves making Cu/

CNT nanocomposite powders by mixing CNT and Cu powders, followed by compaction. Common

mixing methods are ball/attrition milling [23–29] and ultrasonication [30–32]. Alternative methods

(also used in combination with milling/ultrasonication) to make nanocomposite powders include

using CNT powders for electroless Cu deposition [33–39] and molecular-level mixing with copper

salts [21,31,40–47]. Usual compaction methods are spark plasma sintering (SPS [28–32]), isostatic

pressing [25,43,47], high-pressure torsion (HPT) [45,48–50], forging [36,37], etc. In approach 2, Cu is

electrochemically deposited at CNT template cathodes by reducing Cu ions in solutions [3,6,51–67].

Alternatively, CNTs and Cu are co-deposited from dispersions of charged nanotubes in Cu-ion

solutions [22,68–70]. In addition to these two major approaches, other methods, such as physical

vapour deposition [71], magnetron sputtering [72], etc. have also been recently used for composite

fabrication. In the following sub-sections, we examine the development and achievements of the two

major fabrication approaches.

2.1. Powder-processing Cu/CNT composites
Powder-processing has been used to make the earliest composites (in 2001 [23]) as research on metal-

matrix/CNT composites evolved from CNT-ceramics composites studies [9], borrowing processing

techniques, such as milling, sintering, etc. In general, powder-processing has mainly focused on

improving mechanical properties of Cu by adding CNTs as reinforcing agents, although other

properties (electrical and thermal) have been explored. Over nearly two decades of Cu/CNT research,

powder-processed composites with higher strength, modulus, hardness and wear properties than Cu

have been demonstrated. Progress has been made in inventing mixing methods to achieve

homogeneous CNT/Cu distribution and in scaled-up fabrication of application-ready structures, such

as macroscopic wires.

The first powder-processed composites were fabricated by ball milling multi-walled carbon

nanotubes (MWCNTs) and Cu powders followed by isostatic pressing and isothermal sintering [23].

The composites with up to 12 vol% CNTs demonstrated better wear properties and hardness than

copper. However, physically mixing CNTs and Cu powders results in poor adhesion between CNTs

and Cu due to density differences of the two materials (less than 2.0 g cm23 for CNTs [18,19] versus

8.9 g cm23 for Cu [2]). The lighter CNTs remain on the Cu particle surface instead of embedding
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references 21 and 22 reproduced with permission.
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within. This leads to non-uniform composites after compaction, with agglomerated CNTs poorly

dispersed in the matrix. To address this issue, CNTs made heavier by coating with other metals (such

as Ni [23]) are used for the mixing stage. However, other mixing methods were required to improve

CNT–Cu interaction to ensure uniform CNT–Cu distribution without a third element.

A novel molecular-level mixing method was developed to enhance CNT–Cu interaction (figure 3)

[21,31,40–47]. In this method, suspensions of CNTs with anionic functional groups are mixed with

Cu2þ salt solutions, which encourages electrostatic interaction between the two entities (rather than

merely physical adhesion). The CNT/copper salt solutions are dried and calcined to make copper-

oxide/CNT composite particles, which are then reduced, usually by H2-annealing to CNT-embedded

Cu nanocomposite powders. These nanocomposite powders are then compacted by SPS [21,42,44] or

isostatic pressing and thermal sintering [43]. The first molecular-level mixing composites with 5 and

10 vol% MWCNTs showed yield strengths 2–3 times that of Cu along with a higher Young’s

modulus than Cu (figure 3) [21]. This remarkable reinforcement was attributed to high load-transfer

efficiency due to improved CNT–Cu bonding. Xue et al. showed that the yield and tensile strengths of

Cu/MWCNT(5 vol%) composites prepared by molecular-level mixing are higher than their ball-milled

counterparts [44]. Molecular-level mixed composites also show a lower coefficient of thermal

expansion (CTE) (of 12.1 ppm) than Cu (17 ppm) [42] and a lower mismatch with Si CTE (of

3–5 ppm). This indicates the Cu/CNT’s potential as a better interconnect material than copper for

electronics with higher thermal stabilities. The lower CTE mismatch with Si (the usual substrate in

electronics) is critical for interconnect materials, to avoid their thermal expansion-driven delamination

from the chip. Mendoza et al. demonstrated the applicability of molecular-level mixing to single-

walled (SW) CNTs [43]. Their Cu/SWCNT(10 vol%) composites showed an increase in both hardness

(42% compared to Cu) and electrical conductivity (three times higher at 80 K).

Besides achieving homogeneous CNT/Cu distribution, powder-processing has been successful in

fabricating composites in application-ready configurations, such as wires. Arnaud et al. [30] report

1.5 m long Cu/CNT wires made by powder-processing with diameters similar to industrial copper

wires (0.2–1 mm). The Cu/DWCNT(0.5 vol%) wires were produced by ultrasonication mixing, followed

by SPS and wire drawing and showed tensile strengths greater than Cu and room temperature

electrical conductivities similar to Cu.
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Despite achievements in making possible the fabrication of homogeneous composites with high

performances, powder-processing poses several limitations.

(1) The CNT vol% routinely achieved in powder-processed composites is less than 20 vol% (figure 4a).

Therefore, most composites show densities nearly equivalent to Cu with no weight reduction

advantages. Guirderdoni et al. attempted to include approximately 33 vol% CNTs in their powder-

processed composites [32]. However, the samples were found to lack CNT distribution

homogeneity and comprised areas with and without nanotubes.

(2) Powder process precludes CNT alignment in composites as the methodology unavoidably involves a

mixing step. Additional post-production steps have been applied to align CNTs, such as high-ratio

differential speed rolling [24], die stretching [36,37] and magnetic field application [35]. Although

these studies demonstrate that CNT alignment benefits Cu/CNT mechanical, thermal and

electrical properties, most samples contain less than 10 vol% nanotubes. Increasing CNT vol%

with alignment and uniform dispersion in Cu matrix is necessary to achieve lightweight

composites with high performances, specifically electrical and thermal conductivities.

(3) Powder-processing is incompatible to make microscale composite structures required for electronic

devices, such as vias or horizontal interconnects on Si substrates. Most powder-processed samples

are macroscopic pellets [43], or cylinders and wires [30].

2.2. Electrodepositing Cu/CNT composites
Copper electrodeposition of CNT templates from Cu2þ salt solutions emerged as an alternative Cu/CNT

fabrication method, overcoming the limits of powder-processing. Electrodeposition has

made lightweight composite fabrication possible by allowing inclusion of higher CNT vol% than

powder-processing (figure 4a). Further, electrodeposition allows for easier CNT alignment control

than powder process, and composites with CNTs in networks (no alignment) [51], cross-ply [62] and

unidirectional alignment [55,57,59,60] have been fabricated. In addition, electrodeposition affords Cu/

CNT fabrication at various scales and in different configurations (figure 4b). Both microscale Cu/CNT,

such as pillars [52,59] and patterns [3,6,60] on Si substrates (for device application) and macroscale

samples, such as sheets/films [55,57,62,65] and wires [53,54,56,63,64,66,67] (for power lines, motor

windings, etc.) have been reported.

Developing structurally well-regulated CNT templates and establishing processing/deposition

protocols suitable for these templates have been critical for electrodeposition to emerge as a viable

composite fabrication approach. Synthesizing CNT templates is now fairly well-established. CNT

materials of various configurations, such as macro wires and sheets or micropillars with controlled

CNT orientation and structures are now readily available [73–75] and even produced commercially



0 10 20 30 40 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
electrodeposition
powder process

C
T

E
/n

or
m

al
iz

ed
 b

y 
C

u 
C

T
E

CNT vol%

copper CTE 

0 20 40 60 80 100
0

2.0 × 104

4.0 × 104

6.0 × 104

8.0 × 104

1.0 × 105

1.2 × 105

vo
l%

 li
m

it:
 

po
w

de
r 

pr
oc

es
s

sp
ec

if
ic

 c
on

du
ct

iv
ity

(S
 c

m
–1

 g
–1

 c
m

–3
)

CNT vol%

Cu specific conductivity 

(a) (b)

(e) ( f )

(c) (d)

microscale Cu/CNT planar patterns and pillars

50 µm15.3 µm

100 µm 2.5 mm

Cu/CNT macrowires and sheets 

2000 2004 2008 2012 2016

0

20

40

60

powder process:
CNT vol% limit

 electrodeposition
 powder process

C
N

T
 v

ol
%

publication year

electrodeposition
powder process

SWNT

SWNT bundle

MWNT CNT-Cu
CNT-Cu

Cu
AgAl

AuPt
Fe

SnPbTi

Cu-Sn

graphene

GO

am
pa

ci
ty

 (
A

 c
m

–2
)

conductivity (S cm–1)

co
nd

uc
tiv

ity
 (

×
10

6 
S 

cm
–1

)

104

102 103 104 105 106

105

106

107

0.2
300

copper

350 400
temperature (K)

450 500

0.3

0.4

0.5

0.6

106

109

1010

Figure 4. Advantages of electrodeposition versus powder-process Cu/CNT fabrication: (a) reported composite CNT vol% trend (over
years), (b) various configurations of electrodeposited Cu/CNT ([3,59,60,63]: clockwise from top-left), (c) specific conductivity and
(d ) CTE versus CNT vol%. Plots depicting the (e) current stability [3] and ( f ) conductivity stability with temperature of
electrodeposited composites [3]. Images in (b), (e), and ( f ) are reproduced with permission from references [3,59,60,63].

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:180814
6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 A

ug
us

t 2
02

1 
(https://www.veelotech.com/products-1/ (accessed 16 May 2018); http://www.nanocomptech.com/

(accessed 16 May 2018)). In terms of processing, strategies to improve CNT template wetting by the

electrolyte have advanced as typical aqueous copper salt electrodeposition solutions (like CuSO4/

H2SO4) are unsuited for hydrophobic CNT templates. These strategies involve either (i) increasing

CNT template hydrophilicity or (ii) modifying Cu electrolyte to suit hydrophobic CNTs.
(i) Increasing CNT template hydrophilicity: CNTs have been functionalized with oxygen-containing groups

to improve hydrophilicity and, thereby, wetting by aqueous Cu electrolytes. Usual functionalization

methods are anodization [54,66], heat-treatment in oxygen atmosphere [66], etc. Besides facilitating

Cu deposition, using oxygen-functionalized templates is also reported to improve CNT–Cu

interaction in the composites, leading to better properties than composites obtained from non-

functionalized templates. For example, Cu/CNT wires obtained by Cu electrodeposition after

https://www.veelotech.com/products-1/
https://www.veelotech.com/products-1/
http://www.nanocomptech.com/
http://www.nanocomptech.com/
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template anodization are seen to exhibit higher tensile strengths and electrical conductivities than

Cu/CNT wires made without the anodization pre-treatment [54].

(ii) Modifying Cu electrolyte to wet hydrophobic CNTs: Alternative electrolytes, such as organic solutions of

Cu salts capable of wetting hydrophobic CNTs and infiltrating templates have been developed to

facilitate Cu deposition [3,6,59,60,63,64,67]. Mainly, copper acetate in acetonitrile is used for

copper deposition. However, since organic solutions result in slow and insufficient deposition [64],

the method has been used as a seeding step and supplemented by a second seed-growth step

using CuSO4/H2SO4 electrodeposition. This two-stage process has shown success in fabricating

Cu-matrix composites embedding a high vol% of CNTs (45–50 vol%) at both microscale (planar

and vertical interconnects) [3,6,59,60] and macroscale (sheets and wires) [3,63,64,67]. The two-stage

process overcomes the limitation of CNT template direct aqueous electrodeposition that invariably

leads to Cu-coated composites (laminates or core–shell structures) [53–57,61,62,65,66] regardless

of template functionalization.

The major achievement of electrodeposition has been in revealing the potential of Cu/CNT as a

Cu alternative by producing lightweight composites with electrical, thermal and mechanical

performances rivalling that of Cu. As mentioned before, electrodeposition succeeded in breaking the

CNT vol% limit posed by powder-processing. High CNT vol% means composites markedly lighter

than copper, which despite the high carbon content, are seen to perform at par with copper.

Randeniya et al. [53] and Xu et al. [54] achieved Cu/CNT wires one fifth to half as light as copper by

electrodepositing CNT wires. The wires showed electrical conductivities approximately 1.8–3.0 �
105 S cm21 (versus 5.9 � 105 S cm21 for Cu) and high tensile strengths of approximately 500–800 MPa

(versus approx. 220 MPa for copper). Low densities and high performances competitive to Cu

translate to specific properties (density-normalized properties) exceeding that of Cu. As seen in

figure 4c, electrodeposited composites with high CNT vol% show specific electrical conductivities

surpassing Cu. On the other hand, the specific values of powder-processed composites remain below

copper with the low CNT vol%. Besides weight reduction, high CNT vol% composites are necessary

for other properties, such as heat stability (especially, low coefficients of thermal expansion, CTE).

Low CTE values closer to Si (approx. 2.6 ppm [76] versus approx. 17 ppm for Cu [2]) are sought after

for device interconnects to avoid expansion-induced delamination from substrates. Both

electrodeposited [6,22,59] and powder-processed [42,77] composites show reduction in CTE compared

to Cu (figure 4d ). The CTE is lowered in Cu/CNT because Cu expansion is offset by CNTs, which by

themselves show low/negative thermal expansions (due to shrinking in-plane sp2C–sp2C bonds) [6].

However, electrodeposited composites with a higher CNT vol% show much lower CTE values than

the powder-processed samples (figure 4d ). For example, electrodeposited composites with 45–50 vol%

CNTs [6,59] show CTE values of approximately 5 ppm K21 that match with Si. These low CTE values

were achieved in combination with thermal conductivities similar to Cu (approx. 395 W m21 K21)

[6,59], which is beneficial to minimize heat build-up.

Electrodeposited composites also exhibit higher current stability and temperature-stable electrical

conductivities compared to copper, which further corroborate Cu/CNT’s potential as Cu substitutes,

especially for electrical applications. Current stability is the ability of a conducting material to carry

high currents without damage and is quantified in terms of current-carrying capacity (CCC) and

lifetime. High CCC and lifetimes are highly desirable attributes for electrical conductors, specifically

interconnects in downsized and high-power electronics. Electrodeposited Cu/CNTs have

demonstrated current stabilities greater than Cu in both micro [3] and macroscopic structures [57,63].

Cu/CNT microlines with CCCs 100 times that of Cu [3] have been reported (figure 4e), while

macrosheets [57] and wires [63] with 36% and 28% increase in CCC versus Cu, respectively, have

been demonstrated. In terms of lifetime, Chai & Chan [52] show a fivefold increase in lifetime for

vertical Cu/CNT via-interconnects versus Cu. Recently, Subramaniam et al. [60] confirmed lifetime

increase in planar multitier Cu/CNT interconnects compared to Cu. The improved Cu/CNT CCC and

lifetime (versus Cu) are attributed to nanotubes suppressing Cu electromigration (movement of Cu

along electric current) by increasing Cu diffusion activation energy [3].

Besides current stability, electrical conductors used for applications involving high operating

temperatures (motor windings, high-power device interconnects, etc.) require stable electrical

conductivity versus temperature. Normally, electrical conductivity of Cu decreases with temperature

due to increased electron scattering, resulting in a large temperature coefficient of resistance (TCR,

approx. 3.9 � 1023 K21) [78]. Adding CNTs (which by themselves show small TCR values) to Cu

results in TCR reduction and both macro and microscopic Cu/CNT show TCR less than Cu [3,63].
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For example, Cu/CNT macrosheets and wires with TCR values 50–80% that of Cu [57,63] have been

fabricated. At the microscale, planar and vertical interconnects with TCR one tenth [3] and half [59]

that of Cu, respectively, have been demonstrated. As an added benefit, TCR suppression can lead to

composite electrical conductivities greater than Cu at high temperatures (figure 4f ). Subramaniam

et al.’s planar Cu/CNT interconnects show electrical conductivities higher than Cu above 808C [3],

which are typical operating temperatures in high-power electronics (figure 4f ).

In addition to CNT template–Cu electrodeposition, co-electrodeposition of CNTs and Cu has also

been used to fabricate Cu/CNT [22,68–70]. The main advantage of co-electrodeposition over template

electrodeposition is its compatibility with device fabrication. Unlike template electrodeposition, co-

electrodeposition does not require CNT synthesis/transfer onto Si chips involving high-temperature

methods (like chemical vapour deposition). To co-deposit Cu and CNTs, a Cu2þ electrolyte solution

with dispersed CNTs is used. Dispersing sufficiently deaggregated CNTs in the electrolyte to achieve

uniform CNT/Cu mixing in the composite is the key issue in co-electrodeposition. To enhance CNT

deaggregation, additives or CNT treatments have been used. For example, An et al. [22] used

electrostatic repulsion between positively charged CNTs obtained by polyelectrolyte treatment, while

Feng et al. [69] used nanodiamond particles as additives in the electrolyte. Co-electrodeposited

composites show electrical conductivities comparable to that of copper and improvements in

mechanical properties, such as strength, Young’s modulus and hardness [22,68–70]. However, the

maximum CNT vol% obtained in co-electrodeposited composites is approximately 21 vol% [22], which

is less than that achieved by template deposition.

Although high-performance composites with high CNT vol% that show promise as Cu alternatives

have been fabricated (by template electrodeposition), Cu/CNT performances fall well below

expectations. According to effective-medium model calculations, electrical conductivities 2 � Cu can

be achieved in composites with greater than 30–40 vol% defect-free individual CNTs aligned along

bias direction embedded in a Cu-matrix (figure 5a(i)) [79]. Similarly, atomistic simulations predict

high thermal conductivities (.Cu) for composites that embed aligned minimally aggregated CNTs in

Cu with a large CNT–Cu interface (figure 5a(ii)) [80,83]. Experimentally obtained values contradict

these theoretical predictions and the highest observed composite electrical and thermal conductivities

with 45 vol% aligned CNTs well-dispersed in Cu-matrix are less than or only comparable to Cu

[3,6,59,63]. Encouragingly, the mechanical strengths of the composites exceed that of copper in

agreement with modelling data (figure 5a(iii)) [81]. Therefore, the full potential of Cu/CNT in terms

of overall electrical, thermal and mechanical properties is yet to be realized. In the next section, we

will identify challenges that need addressing and propose directions for realizing and harnessing the

true potential of Cu/CNT.
3. Cu/CNT research: goals, challenges and future
The research community’s long-term goal is to replace copper with Cu/CNT that is lighter and with

superior electrical, mechanical and thermal properties in applications ranging from data and electricity

cables to interconnects. There are two grand challenges in achieving this goal—(1) fabricating

Cu/CNT outperforming Cu as per theoretical predictions (figure 5a), and (2) enabling lab-to-market

transition of Cu/CNT by industrialization and facilitating real-world utilization (figure 5b). Research

directions to solve specific issues in each of the two grand-challenges are discussed in §§3.1 and 3.2.

3.1. Fabricating Cu/CNT outperforming Cu
The first grand challenge in Cu/CNT research is to fabricate composites with a high nanotube vol% as

well as a combination of mechanical, thermal and electrical performances surpassing Cu. Theoretical

studies that predict Cu/CNT to surpass performances (figure 5a) assume an ideal composite

[79–81,83]. The ideal composite consists of a continuous Cu matrix embedding a high vol% of individual
unidirectionally aligned CNTs spatially distributed uniformly throughout. The CNT–Cu interactions in the
ideal composite are assumed to allow for superior electron/phonon transport (figure 5a(i)(ii)) and for CNTs
to mechanically reinforce the metal matrix (figure 5a(iii)) improving electrical, thermal and mechanical
properties. However, there is a mismatch between the ideal composite and experimental samples, and

the observed Cu/CNT performances have not met expectations. We identify three issues to be

addressed to reduce the mismatch between ideal and real-world composites to achieve Cu/CNT that

outperforms Cu:
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(1) achieve uniform CNT and Cu distribution at high CNT vol% (figure 6a),

(2) ensure effective CNT–Cu interaction (figure 6b), and

(3) control CNT and Cu-matrix attributes (figure 6c,d ).

Below, we propose research directions to address each issue in the context of efforts already reported

in literature.
3.1.1. Achieve uniform CNT and Cu distribution at high CNT vol%

The main difficulty with achieving uniform CNT and Cu spatial distribution is phase separation due to

lack of interaction between individual nanotubes and copper. Phase separation arises from fabrication

issues and manifests differently in powder-processed and electrodeposited composites. The issues

and solutions for minimizing phase separation and improving CNT and Cu distribution for both

fabrication methods are discussed below.

(a) Achieving uniform CNT and Cu distribution by powder-processing: Phase separation manifests as

localized CNT agglomerations (figure 6a), aggravated with increasing CNT vol% in powder-processed

composites [32,35]. The CNT agglomerations increase sample porosity and become the ‘weakest link

in the chain’, accumulating local stress and increasing electron and phonon scattering. Consequently,

powder-processed composites with localized CNT aggregations show deteriorated properties. Cho

et al. [88] note CNT aggregation as the key cause for lowered thermal conductivity (versus Cu) in

composites with at least 5 vol% CNTs. In contrast, their composites with uniformly distributed 3 vol%

or less CNTs show slightly higher thermal conductivities than Cu. Similar reductions in powder-

processed composite hardness, strength and wear properties versus CNT vol% ascribed to nanotube

agglomeration have been observed widely. Phase separation in powder-processed composites is

mainly seen in samples obtained by physical mixing, which ignores Cu versus CNT density

differences and relies on weak van der Waals forces to induce CNT–Cu interaction.

Instead of physical mixing, molecular mixing (involving blending CNTs and copper salts) [21,31,40–47]

that seeds Cu on nanotubes through stronger electrostatic interactions enhances homogeneity and

properties of powder-processed composites (as seen in §2.1). The nanotubes are usually functionalized

covalently or non-covalently to acquire a negative charge to interact with positively charged copper in

salts. Non-covalent functionalization shows more promise for attaining property improvement with

composite homogeneity by molecular mixing than covalent functionalization. Covalent CNT
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functionalization degrades the nanocarbon lattice (especially at the Cu-matrix/nanotube interface), which

is disadvantageous for composite electron/phonon transport properties. Kim et al. [42] observed a 40–50%

drop in thermal conductivity (versus Cu) in molecular mixed Cu/MWCNT, ascribed to phonon dissipation

at functionalized nanotube/Cu interface. The nanocarbon lattice degradation also renders covalent

functionalization incompatible for processing Cu/CNT with few-walled/single-walled nanotubes. On

the other hand, by using non-covalently functionalized CNTs for molecular mixing, Mendoza et al. [43]

fabricated SWCNT composites with electrical conductivity (at 80 K) and hardness better than copper.

However, the effect of non-covalent nanotube functionalization on other composite properties
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(mechanical strength, thermal conductivity, CTE, CCC, etc.) are unknown. Besides molecular mixing,

electroless Cu coating of functionalized CNTs [34,38,39] in solution have been used as a Cu seeding

step (to supplement or replace physical mixing). However, these alternative seeding approaches have

used only covalently functionalized CNTs so far. The use of non-covalently functionalized CNTs for

these alternative Cu-seeding methods needs to be explored toward making homogeneous Cu/CNT

with high comprehensive performances.

(b) Achieving uniform CNT and Cu distribution by template electrodeposition: CNT–Cu phase

separation manifests as [CNT-core/Cu-sheath] structures in composites fabricated by aqueous-

medium Cu electrodeposition of CNT templates [53–57,61,62,65,66]. Alternative protocols using

organic solutions of Cu2þ as electrolytes (two-stage electrodeposition [3,6,59,60,63,64,67]) have been

successful in obtaining Cu-matrix composites instead of core-sheath structures (as seen in §2.2). These

composites have so far shown the best combination of properties reported, i.e. highest CNT vol% and

maximum observed electrical and thermal conductivities as well as current and heat stabilities (in

terms of CCC, TCR and CTE). However, in the two-stage electrodeposited samples, CNT bundles

rather than individual CNTs are embedded in the Cu matrix, leading to the less-than-predicted

[79,80,83] electrical and thermal conductivities. CNT bundling reduces CNT–Cu interfacial area and,

hence, suppresses nanotube contribution to composite performance. Currently, there are no reports for

minimizing CNT bundling in composites obtained by two-stage electrodeposition. To minimize CNT

bundling for composite performance enhancement, we propose using functionalized (preferably

non-covalently) low-density CNT templates for two-stage electrodeposition.

3.1.2. Ensure effective CNT – Cu interfacial interaction

The second issue to be addressed to achieve composite performances better than Cu is to ensure effective

CNT–Cu interfacial interaction. By default, interfacial interaction is poor because CNTs and copper show

poor affinity to each other. Cu, with its fully filled d orbitals, does not chemically interact with carbon.

Further, Cu does not wet CNTs because of the high mobility of Cu atoms on CNTs [89], large surface

energy difference between the two materials (Cu: approx. 1800 mJ m22 [90] versus CNTs: approx. 30–

45 mJ cm22 [91]), and the high propensity of the materials to self-aggregate [92]. However, enhancing

CNT–Cu interaction is critical for improving stress transfer and electron/phonon transport through

composites. Improving CNT–Cu interaction can also be expected to aid CNT and Cu distribution

uniformity (in addition to discussion in §3.1.1). To improve CNT–Cu interfacial interaction, several

reports have attempted including an additive to the interface that strongly associates with both Cu

and CNTs (figure 6b). Two classes of CNT–Cu interfacial interaction-enhancing additives have been

identified—(a) oxygen and (b) carbide-forming metals.

(a) Oxygen as CNT–Cu interfacial interaction enhancer: Oxygen inclusion is usually accomplished

by using nanotubes with oxygenated surface functional groups for composite fabrication. Both

theoretical and experimental studies reveal the advantages of including oxygen to the CNT–Cu

interface. Density functional theory calculations [93] show that Cu adsorbs more strongly to CNTs

with oxygenated functional groups than to CNTs without these functional groups. For example, Cu

adsorption binding energy is 1.37 eV for CNTs with –COOH groups versus 0.53 eV for neat CNTs. In

experimental studies, Kim et al. [94] note that interfacial oxygen (on functionalized nanotube surfaces)

improves composite strengths in molecularly mixed composites. The strength increase is attributed to

stronger CNT–Cu interfacial bonding through oxygen, which leads to better load-sharing, allowing

nanotubes to function more effectively as reinforcing agents. Further, composite homogeneity was also

observed to increase as surface functional groups reduced nanotube agglomeration during fabrication.

(b) Carbide-forming metals as CNT–Cu interfacial interaction enhancer: Another strategy to

improve CNT–Cu interaction is to add metals that easily form carbides to the CNT–Cu interface. The

carbide-forming metals bridge CNTs with Cu because of their high affinity to carbon and ability to

alloy with Cu. Several theoretical and experimental studies demonstrate the benefits of carbide-

forming metals (iron [95], nickel [23,72,96–99], chromium [72,84,100–102], molybdenum [103],

titanium [104], ruthenium [77], etc.) to improve CNT–Cu interfacial interaction. Milowska et al. [72]

recommend using Ni, Cr and Al as interfacial enhancers to improve composite conductance by

boosting CNT integration with Cu matrix. Their first principle calculations indicate that these metals

create favourable interface geometries, increase density of states and reduce contact resistance.

Similarly, molecular dynamics simulations predict significant improvements in Cu/CNT mechanical

strength and damping characteristics with Ni as the interfacial enhancer [96,97]. This improvement is

attributed to Ni–CNT and Ni–Cu attractions causing a strong adhesive force between the Cu matrix
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and nanotube filler (compared to the weak van der Waals Cu–CNT interactions in the absence of Ni).

Experimentally, Lim et al. [98] and Kim et al. [99] have shown improved tribological properties in Cu/

Ni/CNT versus Cu/CNT, while Nie et al.’s [103] Cu/Mo/CNT composites show improved electrical

conductivity, thermal conductivity, tensile strength and hardness (than Cu/CNT). In some

experimental studies, carbides are detected at the CNT/additive interface and are credited for

improving interfacial bonding and Cu/CNT properties. Cheng et al. [104] added Ti as the interfacial

enhancer and observed TiC formation at the CNT–Cu interface. Due to the crystallographic matching

between the TiC (002) and Cu (002) planes, Cu/Ti/CNT composites showed better mechanical

strength than Cu/CNT. In another work, Chu et al. [84] fabricated Cu/Cr/CNT composites with

higher hardness and tensile strengths than Cu/CNT, which is credited to a thin Cr3C2 layer formed at

the CNT–Cr interface.

Despite promise shown by additives in improving interfacial interaction between CNTs and Cu,

composites with interfacial enhancers have not experimentally shown overall performances surpassing

that of copper. This is because there is a lack of understanding on how additives affect CNT–Cu

interface (and composite performance), and methods to regulate interfacial enhancers to improve

composite properties are virtually non-existent. In terms of understanding the role of interfacial

enhancers, benefits of additives have been demonstrated only in low CNT vol% composites, fabricated

mainly by powder-processing. Literature on the effects and benefits of additives in high vol%

(electrodeposited) Cu/CNT is missing and research efforts are required to fulfil this lacuna.

In some cases, additives are seen to show a trade-off between properties, improving one set of

properties (usually mechanical), while degrading others (thermal and electrical). For example, in

composites prepared by molecular mixing, oxygen inclusion degrades Cu/CNT thermal conductivity,

while improving strength [94]. The poor thermal conductivity is attributed to carbon lattice damage at

the CNT–Cu interface caused by nanotube functionalization applied for interfacial oxygen inclusion

during Cu/CNT fabrication. To harness and understand the benefits of interfacial oxygen on

composite properties, the negative effects of nanocarbon lattice damage need to be decoupled and

suppressed. Toward this, we recommend exploring interfacial oxygen inclusion using alternative

milder covalent and non-covalent CNT functionalization methods. As a precedent, Mendoza et al.’s
composites [43] fabricated by molecular mixing using non-covalently functionalized (surfactant-

wrapped) SWCNTs show an increase in both mechanical (hardness) and electrical properties

(conductivity) without trade-off. However, in their study, the extent of oxygen inclusion at the

interface is unclear as the elemental composition of the Cu–O–CNT interface is not explicitly

characterized. In general, there is a lacuna of sufficient characterization data on Cu–additive–CNT

interfaces. Also, studies determining the additive amount and Cu–additive–CNT bond type required

to minimize property trade-off in composites are absent. Additional efforts need to be devoted toward

rigorously characterizing the CNT–additive–Cu interface and identifying interface structures and

compositions capable of enhancing Cu/CNT performances without trade-offs.

Besides sufficient CNT–Cu interface characterization, research efforts are also required to explore

fabrication routes to control the amount, bonding type and location of interfacial enhancers in

composites. In terms of location of interfacial enhancers, Milowska et al. [72] suggest that carbide-

forming metal additives are to be included at CNT ends rather than on sidewalls to increase electrical

properties. Current processing strategies are insufficient to achieve additive inclusion with such

atomic-level precision. Also, studies similar to Milowska et al. on the effect of additive element’s

position on thermal and mechanical performances are necessary.

3.1.3. Control CNT and Cu-matrix attributes

The composite performance is likely to be affected by the basic attributes of the two constituents i.e.

CNTs (such as diameter, wall number, etc., figure 6c) and Cu matrix (grain size (figure 6d ) and

micro/nanostructures). However, concrete information on the ideal CNT and Cu attributes required to

maximize overall composite performances is missing and systematic studies are required in this direction.

(a) Effects and control of CNT attributes in composites: The CNT wall number, diameter, length and

purity affect the volume occupancy and interfacial area in the composites, influencing Cu/CNT

performances. Further, since CNTs are one-dimensional nanostructures, their orientation in the

composites relative to applied stress, heat and current flow directions are also likely to affect the Cu–

CNT stress transfer as well as electron and phonon transport behaviours. Several studies explore the

effects of these CNT attributes on composite properties and some examples are given below. Nayan

et al. [28] and Guiderdoni et al. [32] show that the smaller the nanotube wall number, the better are
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the wear properties, hardness and mechanical strength. Both studies attribute their results to weak van

der Waals forces between concentric walls of multiwall CNTs leading to lower shear resistances and

poorer CNT–Cu interfacial strengths. Sun & Chen [105] show an analogous inverse trend for

mechanical strength versus nanotube diameter, i.e. the smaller the nanotube diameter, the larger was

the tensile strength due to the large total interfacial bonding area. A few studies have explored the

effect of CNT length, mainly on Cu/CNT strength. Experimental results by Tsai & Jeng [45] indicate

that shorter CNTs lead to higher strengths and stiffnesses in composites. Their simulations indicate

that the CNT buckling behaviour in composites (responsible for strain release from the matrix)

depends on the CNT length and that shorter CNTs lead to global buckling, while longer CNTs

induce local buckling. However, Duan et al.’s [97] calculations suggest that when Cu–CNT interaction

is through adhesive forces, the pull-out force is proportional to CNT length. Hence, for composites

with interfacial enhancers, the longer the CNTs, the higher is the strength. The effect of CNT

diameter, wall number and length on electrical and thermal properties is less well known. Shuai et al.
[57] and Sundaram et al. [63] point out that the presence of CNT ends degrades composite CCC and

electrical conductivity, implying that longer CNTs are preferred for high electrical performances.

The influence of CNT orientation on composite properties has been explored in both theoretical and

experimental works. Computational studies by Ghorbani-Asl et al. [106] indicate that CNT alignment

with applied bias is preferred for high Cu/CNT electrical conductivities. Experimentally, CNT

orientation has been observed to affect performances of both powder-processed and electrodeposited

composites. In powder-processed unidirectionally aligned CNT/Cu, maximum composite strength,

electrical and thermal conductivities, as well as wear properties are observed along the CNT

orientation direction, while maximum hardness is seen perpendicular to the CNT orientation [36–38].

In electrodeposited samples, Cu/CNT with unidirectionally aligned nanotubes [55] are observed to

show higher strengths than copper along the CNT orientation. Besides orientation, CNT purity in

terms of presence/absence of amorphous carbonaceous impurities (included during CNT synthesis)

also critically affects Cu/CNT properties. Cho et al. [107] show that composite thermal conductivities

decrease with inclusion of amorphous carbon impurities, which occupy the CNT–Cu interface and

act as thermal barriers. Preliminary results in the current literature give a general idea that small-

diameter, few-walled, pure, long and oriented CNTs may probably be beneficial for composite

performances. However, exerting control over CNT attributes in Cu/CNT presents three difficulties.

First, a major gap in literature is the absence of experimental studies on how CNT crystallinity

(measured as G/D) and chirality influence Cu/CNT performance. Ballistically conducting (i.e. metallic)

nanotubes without defects (i.e. high G/D ratios) are predicted [79] to be required to achieve electrical

conductivities double that of copper and high thermal conductivities [80,83]. There are few theoretical

works on the effect of CNT chirality on composite performance, but none on G/D. With regard to

nanotube chirality, Ghorbani-Asl et al. [106] show that the composite electrical conductance depends

only weakly on nanotube chirality using non-equilibrium Green’s function approach when the CNT–

Cu interaction is poor. However, the impact of CNT chirality in composites with interface enhancers

that allow for better CNT–Cu interaction are unknown. Both theoretical and experimental studies are

required in this direction. In addition, modelling studies show that CNT chirality affects Al/CNT

composite mechanical properties [108] and armchair CNTs enhance mechanical performances more

than zig-zag CNTs. However, similar studies on Cu/CNT are missing and are necessary.

Second, even if the ideal CNT attributes for maximum composite performances are known,

synthesizing and utilizing such CNTs for composite fabrication is inherently a major issue. CNT

synthesis always yields materials with a distribution of lengths, diameters, wall numbers and

chiralities. Making nanotube materials with a higher degree of structural control is a challenge to be

addressed by the CNT synthesis research community. Specifically, chiral-selective CNT manufacture is

a major problem currently tackled by the nanotube synthesis community [86,109,110].

Third, CNT attributes can change during composite fabrication processing. The issue is encountered

especially in controlling length and orientation by mixing-based fabrications (mainly powder process)

that break and shorten as well as misalign nanotubes. Modification of CNT attributes during

composite fabrication also limits procuring reliable data on composite performance versus nanotube

structure. However, recourses are available to minimize CNT structure modifications during

composite fabrication. For example, Chen et al. used solution-based mixing methods to minimize CNT

breakage while powder-processing Al-matrix/CNT composites and could precisely control nanotube

aspect ratios on a wide range (6.5–55) to study strengthening effects [111]. Their results show that

long CNTs (aspect ratio . 40) strengthened composites by load transfer, while shorter nanotubes

strengthened composites by Orowan mechanism (i.e. CNTs loop and pin the dislocations). Similar
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alterations to powder-processing can be adopted for Cu/CNT fabrication. Further, more benign

fabrications like template electrodeposition that preserve CNT attributes (length and orientation)

during processing can also be used, especially for initial composite performance versus nanotube

structure studies. The current nanotube synthesis technologies are sufficient to make templates with

adequately controlled CNT diameter, wall number, G/D, orientation and purity for these initial

studies [112–114].

(b) Effects and control of Cu-matrix attributes in composites: Attributes of the Cu-matrix (grain size,

micro/nanostructure, defect density, etc.) are highly likely to influence composite performances. Similar

to conventional metals and alloys, Cu/CNT shows yield strength increase with decrease in grain size

(grain refinement) in accordance with the Hall–Petch relationship. For instance, Kim et al. [115]

demonstrate 27% increase in composite yield strength with drop in Cu grain size from 4 to 1.5 mm.

This strengthening achieved by grain refinement is attributed to increased number of grain boundaries

that pin dislocations, impede their motion and propagation, delaying the material’s deformation and

failure.

The Cu grain size is affected both by fabrication processing (powder method or electrodeposition)

and by the CNTs themselves. In powder-processing, mainly the compaction stage affects the Cu grain

size. Samples with average Cu grain sizes less than or equal to 100 nm have been obtained by severe

plastic deformation processes, such as high-pressure torsion (HPT) and differential speed rolling

[24,48–50,87,116,117]. On the other hand, sintering/hot pressing yield Cu grain sizes ranging from

100 nm to a few micrometres [43,115]. For electrodeposited composites, nucleation rates (a function of

electrodeposition current, time, electrolyte concentration, etc.) affect grain attributes, and typical grain

sizes range from 300 to 500 nm to a few micrometres [56,61,62,68,105].

Irrespective of the processing, CNTs by themselves aid refinement, decreasing average grain size and

narrowing size distribution. Therefore, besides load-sharing, CNTs also contribute to mechanical

property improvement by promoting grain refinement. Typically, grain size reductions greater than

50% are observed with CNT addition, and refinement increases with CNT vol% [24,39] in the absence

of agglomeration. The mechanism by which CNTs cause grain refinement is fabrication-dependent.

For example, in HPT processing, CNTs aid grain refinement by blocking and accumulating

dislocations that eases sub-grain boundary formation (necessary for severe plastic deformation

processes like HPT [117]). In sintering processes, CNTs located at grain boundaries restrain grain

growth by the Zener pinning effect [39]. In electrodeposition, CNTs become nucleation centres and

increase nucleation rate, leading to smaller grain sizes [68]. Besides affecting grain size, CNTs also

increase dislocation density and twin-fault frequency in the Cu matrix [49,50].

While being a positive influence on mechanical properties, grain refinement is disadvantageous for

composite electrical and thermal performances. Smaller grains, i.e. larger number of grain boundaries

implies increased electron and phonon scattering at grain boundaries. Consequently, fine-grained

composites have shown deteriorated electrical and thermal conductivities [39,62,118]. It is, however,

possible to minimize this trade-off by micro/nanostructure tailoring, which has been demonstrated for

pure copper. Lu et al. [119] achieved nanocrystalline pure copper samples with ultrahigh strength and
high electrical conductivity by introducing a nanostructure consisting of multiple coherent twin

boundaries. Similar efforts to determine Cu-grain size and structure regimes aimed at minimizing

trade-off between electrical/thermal and mechanical properties resulting from grain refinement are

necessary for Cu/CNT.

Tailoring Cu-matrix nano/microstructures may also be vital for improving Cu/CNT current stability

and electromigration reliability for interconnect applications, as Cu diffusion is already restrained by

nanotubes in the composites [3]. Composites with Cu-grain boundaries tailored perpendicular to

current flow (i.e. bamboo micro/nanostructures) may show higher electromigration lifetimes and

reliabilities than randomly oriented polygranular micro/nanostructures, especially in downsized

configurations [120]. While the merit of tailored micro/nanostructures has been demonstrated for pure

Cu interconnects, similar studies for Cu/CNT interconnects are necessary [121].

The main issues in regulating Cu-matrix attributes to maximize overall composite performances are

summarized below:

(i) lack of complete understanding on how Cu-matrix attributes influence various composite

properties and

(ii) lack of methods to control Cu-matrix attributes.

In terms of gaining understanding, the shortage of data on Cu-matrix attributes versus composite

electrical/thermal properties needs to be addressed. Specifically, studies on CTE, CCC, and TCR
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versus Cu grain size and micro/nanostructure are missing and are required. Further, in the extant

literature, grain-size effects have always been intertwined with CNT vol% and agglomeration effects.

Therefore, exclusive studies on grain-size effects on electron and phonon transport are needed in

homogeneous composites. On a related note, composite performance related to Cu grain sizes are

more widely reported for low CNT vol% samples, usually obtained by powder-processing. Analogous

studies are essential for high CNT vol% composites, especially those obtained by electrodeposition.

Finding routes to exercise control on Cu grain size and micro/nanostructure in Cu/CNT needs

further research on fabrication methods. Most studies on Cu grain size control so far have focused on

powder-processing, and regulation of Cu-matrix attributes by electrodeposition needs exploration. For

electrodeposition, as mentioned earlier, Cu grain size and distribution are dictated by Cu nucleation

and growth rates known to depend on parameters such as electrolyte concentration, current, time, etc.

[56,61,62,68,105]. The interconnects industry has already evolved methods, such as using organic

additives, altering electrodeposition parameter, and post-fabrication processing for Cu grain control,

which can be borrowed and tested for Cu/CNT preparation [122–125].

In addition, further research is required to understand how CNT attributes (defects, diameter, wall

number, orientation, etc.) affect Cu-matrix characteristics. With this understanding, the CNTs

themselves can be used as tools for regulating Cu grain size and micro/nanostructures. A few reports

suggest that CNT orientation and functionalization influence Cu grain sizes. For example, samples

with cross-plied CNTs have been observed to show smaller grain and twin lamellae sizes than those

with unidirectionally oriented CNTs [62]. In another study, functionalized CNTs were seen to result in

smaller Cu grains than non-functionalized CNTs [61]. However, these studies have been only on

electrodeposited Cu/CNT. In a CNT wall number versus Cu/CNT performance study, Guiderdoni

et al. [32] did not measure Cu grain sizes due to composite inhomogeneity and wide grain-size

distribution in their samples compacted by SPS. Therefore, studies on how CNT attributes affect

Cu-matrix attributes are necessary on homogeneous powder-processed composites.
3.2. Cu/CNT industrialization and real-world application as Cu-substitutes
We can conclude that Cu/CNT has real-world application potential, primarily as a Cu substitute, based

on properties demonstrated in literature (§2) and avenues available for performance enhancement (§3.1).

However, practical Cu/CNT application presents several issues depending on the market, i.e. niche or

mainstream.
3.2.1. Cu/CNT for niche applications

Using Cu/CNT in niche applications is a more realistic beginning, as market barriers are lower than in

mainstream applications, i.e. the mass-production and cost requirements are low. Niche markets tolerate

disruptive technologies and simply aim to exploit the advantages of Cu/CNT over Cu in terms of

properties for highly specific applications. One example of a niche market for Cu/CNT is the high-

end electronics industry focusing on high-functionality high-power devices. High-end electronics

demand special interconnects, thermal interface materials (TIMs) with heat and current stabilities

greater than Cu and electrical and thermal conductivities at par with Cu. Even in the current state of

development, Cu/CNT meets these requirements. For example, two-stage electrodeposited planar and

vertical Cu/CNT interconnects show CCC greater than Cu, CTE and TCR less than Cu, as well as

electrical and thermal conductivities similar to Cu. As an added advantage, the electrodeposition-

based fabrication is electronics industry-compatible. To enable Cu/CNT application in high-end

electronics, market analysis facilitated by industry–academia collaborations is required to identify

material requirements (dimensions, properties, configurations, etc.) for specific device components.

Further, Cu/CNT’s application to high-end electronics can be accelerated by improving composite

properties using suggestions listed in §3.1.

Besides replacing Cu (as a disruptive technology), Cu/CNT can fulfil applications envisaged for neat-

CNT materials because of their better functionality and integrability. This part-constructive characteristic

of Cu/CNT removes the major roadblock encountered by the CNT industry in finding real-world

applications for nanotubes. For example, Cu/CNT could be a better choice than CNT materials as an

electrode material in energy conversion, harvesting and storage systems. Luo et al. [82] demonstrate

that quantum-dot-sensitized solar cells with Cu/CNT film counter electrodes show higher power

conversion efficiency than neat CNT films (and conventional materials like platinum).
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3.2.2. Cu/CNT for mainstream applications

The two key mainstream applications of Cu/CNT as Cu-replacements are
 s.royalsocietypublish
(a) as interconnects and thermal interface materials in conventional electronics (cell phones, computers,

etc.)

(b) as lightweight macroscopic conductors, such as wires/cables for motors, data and electricity

transmission lines, etc.
 ing.org
R.Soc.open

sci.5:180814
Besides attaining composite performances better than Cu, mainstream application of Cu/CNT needs

industrialization, i.e. reproducible mass-production at low cost using industry-compatible methods,

while preserving properties. Cu/CNT industrialization for electronics and macroscopic conductors

present different issues.

(a) Cu/CNT for mainstream electronics: For the electronics industry, electrodeposition-based Cu/

CNT fabrication methods are most compatible. Co-electrodeposition is closest to the current

processing technologies used by the electronics industry (damascene process [122–125]). However, co-

electrodeposition entails several Cu/CNT structure control issues that need solving, such as obtaining

individually dispersed long CNTs for homogeneous composite fabrication, controlling nanotube

alignment, etc. In this light, CNT-template electrodeposition, which affords easier Cu/CNT structure

control (with regard to composite homogeneity, CNT orientation, etc.) shows more promise than co-

electrodeposition. Currently, maximum Cu/CNT electrical and thermal performances are achieved by

template electrodeposition (two-stage process). However, current template-making methodologies for

electrodeposition involve aligned CNT synthesis and transfer [3,6,59,60], which are expensive and

unsuitable for mass-production. To address this, printing technologies to manufacture CNT templates

for Cu electrodeposition need to be developed.

(b) Cu/CNT for lightweight macroscopic conductors: Mass-production technologies compatible with

the established copper industry are highly desirable for composites to be used as lightweight conductors

in electrical wiring, data cables, etc. Scale-up demonstrations for macroscopic Cu/CNT are already

reported in literature [30,54,63]. For example, Xu et al. [54] demonstrate continuous fabrication of

copper-coated CNT wires by template electrodeposition at approximately 16 cm min21 with promising

electrical and mechanical properties. However, the production methodology is unsuited for the

copper-wire industry, which typically uses processes like die-drawing and annealing. Arnaud et al.
[30] report drawing Cu/CNT wires from SPS sintered composite cylinders, which is more consistent

with the copper-wire industry. However, sintering-based methods are low-throughput batch processes

and continuous processing is favoured for large-scale manufacture.

Considering the fit with conventional Cu industry [126,127], ideal macroscopic Cu/CNT

manufacture methods for mainstream applications are co-electrodeposition or melt-processing.

Cu/CNT co-electrodeposition is compatible with standard Cu electrorefining processes; however, as

discussed earlier, co-electrodeposition entails composite structure control issues yet to be solved.

Cu/CNT manufacture melt-processing is a major challenge considering the poor wetting between

molten Cu and CNTs. Addressing this challenge, Shugart & Scherer [128,129] and Knych et al. [130]

succeeded in melt-processing Cu/MWCNT (2 wt%) composites with uniform Cu–CNT distribution

and electrical conductivities higher than the base copper material. Cu/CNT fabrication was

accomplished by adding nanotubes to vigorously stirred molten copper exposed to an electrical

current in inert gas atmosphere. However, Cu/CNT melt-processing is still in the early stages of

development. Comprehensive composite performances (mechanical, thermal and other electrical

properties) are yet to be characterized and aspects of structural control (CNT and Cu attributes)

need investigation.

In addition to mass-production technology development, Cu/CNT metrology and quality assurance

protocols meeting industrial standards need establishing. In terms of metrology, key properties valued

by the electronics industry (thermal/current cycling and reliability [131]) and the copper wire

conductors industry (alternating current and data transmission properties) need to be evaluated and

reported. For Cu/CNT quality assurance, standard tests established for electronics and wire industries

(prescribed by ASTM [132], IEC [133], IPC [134], IEEE (http://standards.ieee.org/index.html

(accessed 18 May 2018)), etc.) can be applied. Applying standardized testing also facilitates

comparison between Cu/CNT samples and versus copper, assisting both industrialization and

research efforts.

http://standards.ieee.org/index.html
http://standards.ieee.org/index.html
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4. Summary
In this paper, we trace the research and development of Cu/CNT and offer our perspectives on Cu/CNT’s

potential to meet demands for materials outperforming copper for next-generation applications. We discuss

the emergence, achievements and limitations of the two major Cu/CNT fabrication approaches ((1) powder-

processing and (2) electrochemical deposition). Powder-processing has produced composites superior to Cu

mainly in terms of mechanical performances (strength, hardness, stiffness, etc.) due to the reinforcing effect

of CNTs. However, the method precludes inclusion of greater than 20 vol% of CNTs (required for weight

reduction) and composite structure control (in terms of size, shape, nanotube alignment, etc.).

Overcoming these limitations, electrodeposition has achieved micro and macroscale composites with

greater than 45 vol% CNTs (i.e. 34–80% lighter than Cu) with mechanical, thermal and electrical

properties rivalling that of Cu. Specifically, electrodeposited composites show superior heat and current

stabilities than Cu with at par electrical and thermal conductivities. These comprehensive high

performances (versus copper) attest to Cu/CNT’s potential as a future Cu alternative in electrical and

thermal applications ranging from electronics to transmission wires and data cables.

For Cu/CNT to replace copper in real-life applications, two grand challenges need to be solved:

(1) fabricating lightweight composites outperforming Cu in terms of electrical, mechanical and thermal

properties and (2) industrializing Cu/CNT. To beat Cu performances (grand challenge 1), the real-world

composites need to get closer to the ideal composite (i.e. Cu matrix embedding a high vol% of uniformly
distributed aligned individual CNTs), theoretically predicted to show properties better than Cu. We specify

three issues to be addressed by the research community to nudge real-world composites closer to the

ideal: (i) achieve uniform CNT–Cu distribution at high CNT vol%, (ii) ensure effective CNT–Cu

interaction, and (iii) control CNT and Cu-matrix attributes. We discuss practical avenues to address each of

these issues in light of efforts already reported in literature. Transferring Cu/CNT from the lab bench to

real-life applications (grand challenge 2) presents market-dependent issues, i.e. niche or mainstream.

Niche applications (such as high-end interconnects, TIMs, etc.) with a high tolerance to disruptive

technologies and lower market barriers are a more realistic terrain for initial Cu/CNT industrialization.

Encouragingly, currently available microscale Cu/CNT, with their current- and heat-stability properties

better than Cu and device-industry-friendly fabrication, already qualify for application in high-end

interconnects. Mainstream application of Cu/CNT in conventional electronics (as interconnects and TIMs)

and as lightweight macroscopic conductors (cables/wires for motors, data and electrical transmission,

etc.) requires reproducible mass-production at low cost, while attaining the benchmark properties. The

Cu/CNT mass-production technology needs to be compatible with existing industrial practices. While the

mainstream electronics require cheap CNT template-making and electrodeposition protocols, mass-

production of Cu/CNT macroscopic conductors needs to be aligned with traditional Cu-industry

methods, such as co-electrodeposition and melt-processing. Efforts to develop Cu/CNT manufacturing

methodologies viable for mainstream applications have already begun. Replacing the ubiquitous copper

with high-performance Cu/CNT translates to more powerful and sustainable future electrical and

electronics systems, i.e. more fuel-efficient transportation and smaller devices with higher functionality.

With continued efforts from academia and industry, we expect real-life application of Cu/CNT as a lighter

and superior-performing Cu substitute to be realized with immense positive impact to our everyday lives.
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