

HOW WE POWER NOW

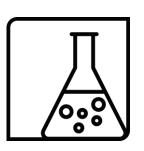
TODAY ON STAGE

BRUNO VARANDASSales Manager, Wind **Owens Corning**

RAFAEL REGATTIERI
Global Technical Leader, Wind
Owens Corning

HWPN VIDEO

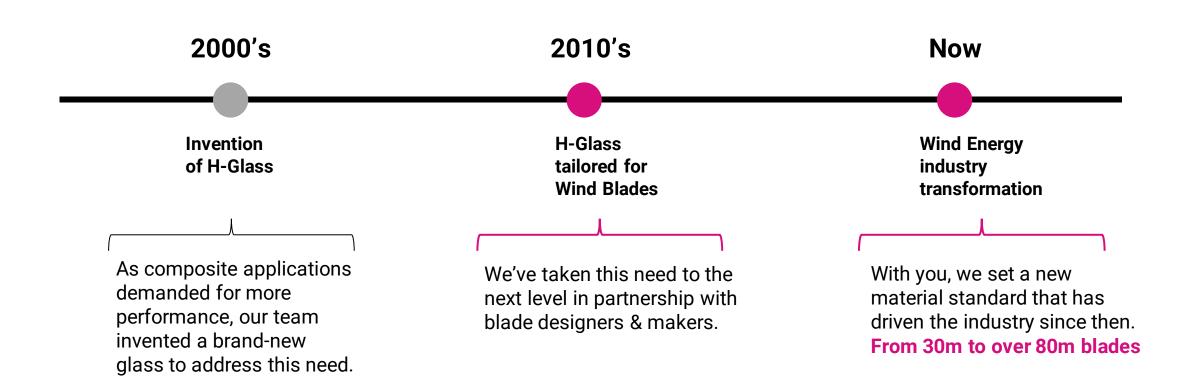
OWENS CORNING COMPOSITES


OVER 80 YEARS AGO

Creators of the first viable glass fiber product & composite application.

WE MAKE IT REAL

Leaders in new technology & applications development.



MATERIALS SCIENCE

Designers of the glasses that have set the industry standard for wind.

PARTNERSHIP & CLIMATE CHANGE FEED OUR PASSION

We design glasses and material systems with the blade designer and engineer in mind

Thinking about the sustainability of the whole blade and how higher performing glasses can reduce its overall impact

This mindset is taking us to what comes next

TURBINE SYSTEM BREAKDOWN

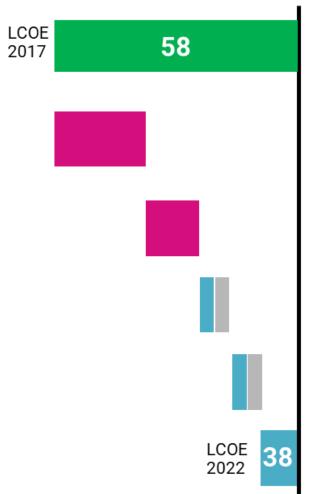
The challenge: new materials and product form factors that enable new wind blade designs and lower cycle-time

WIND BLADES X THE COST OF ENERGY (COE)

OEM's 3 main costs

- 1. Initial capital cost
- Turbine (including blades)
- Tower & Foundation
- Etc.
- 2. AEP
- Annual Energy Production
- 3.0&E cost
- Operational costs

1. Blades cost reduction



2. Improve energy generation efficiency

3. Improve stiffness

MATERIAL SCIENCE IS KEY

Technology group and potential future impact

Rotor	15 %	Longer blades: lightweight structures, load reducing pitch, reduced cost manufacturing
Tower	10%	Taller towers: enable by longitudinal segmented designs and concrete hybrid
Drivetrain	13%	Larger MW ratings: improved reliability geared drivetrains with variable rating capabilities
Electrical and controls	18%	Converter cost out: MW rating upgrades to take advantage of site conditions and turbine loading
2022 Entitlement	12 %	Lower CAPEX Wind plants: economies of scale and technology improvement

INTRODUCING THE H² GLASS GENERATION

MORE MODULUS. TRUE PERFORMANCE. RELIABLE SUPPLY.

Designed to power more sustainable wind blades.

- Patented technology that delivers the highest specific modulus in its class
- Now available with dedicated, reliable large-scale production

Ultra-design by fabric scientists.

 Manufactured with the world's best fabric technology at Owens Corning's state-of-the-art facilities

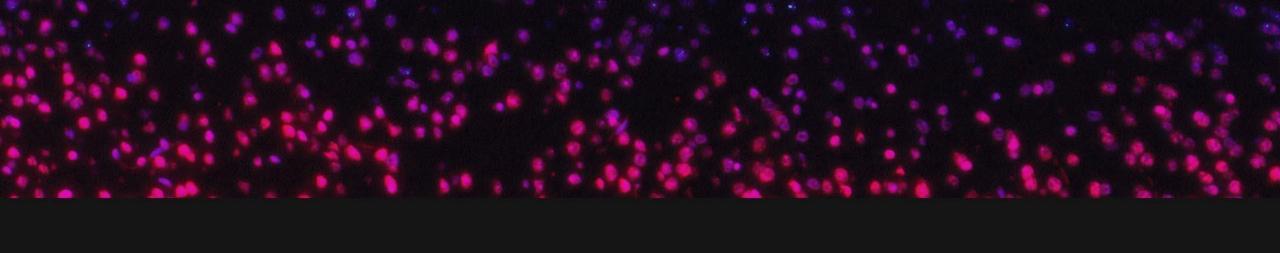
Consistency and efficiency, all in one.

 Pultrusion allows us to maximize the power of H² Glass

INTRODUCING THE H² GLASS GENERATION

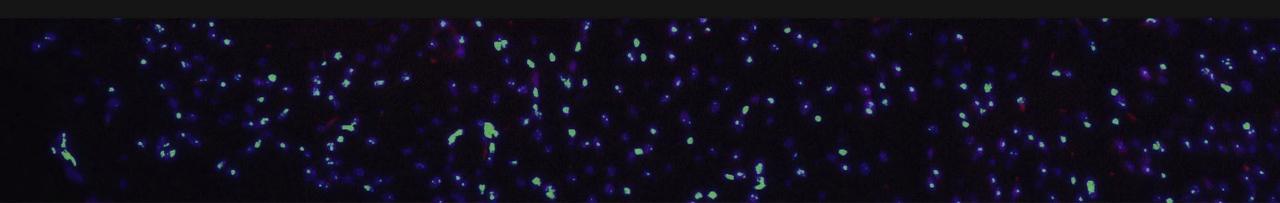
MORE MODULUS. TRUE PERFORMANCE. RELIABLE SUPPLY.

91 GPa – Single Filament Sonic Modulus¹


95 GPa - ITS Modulus²

51 GPa – Laminate modulus at 55% fiber volume fraction for unidirectional fabrics

63 GPa – Laminate modulus at 70% fiber volume fraction


¹NOL TR 65-87 testing method - true performance of the material proven by the industry's most advanced and reliable modulus testing for glass fiber. ²ASTM D2343/ISO9163 testing method.

Data verified by DNV-GL certified testing laboratory.

OWENS CORNING ® GLASS AN EVEN HIGHER-MODULUS FUTURE

INTRODUCING: H³ GLASS

GLASS SCIENCE

Designed to power the next wind blade generation.

MORE **MODULUS**

Modulus increase proven by the most reliable, accurate testing protocols of sonic modulus.

STABLE PERFORMANCE

Stable specific modulus to enable reliable blade design & production. **H-GLASS**

H² GLASS

H³ GLASS

89 GPa

(Sonic Glass Fiber Modulus)

91 GPa

(Sonic Glass Fiber Modulus)

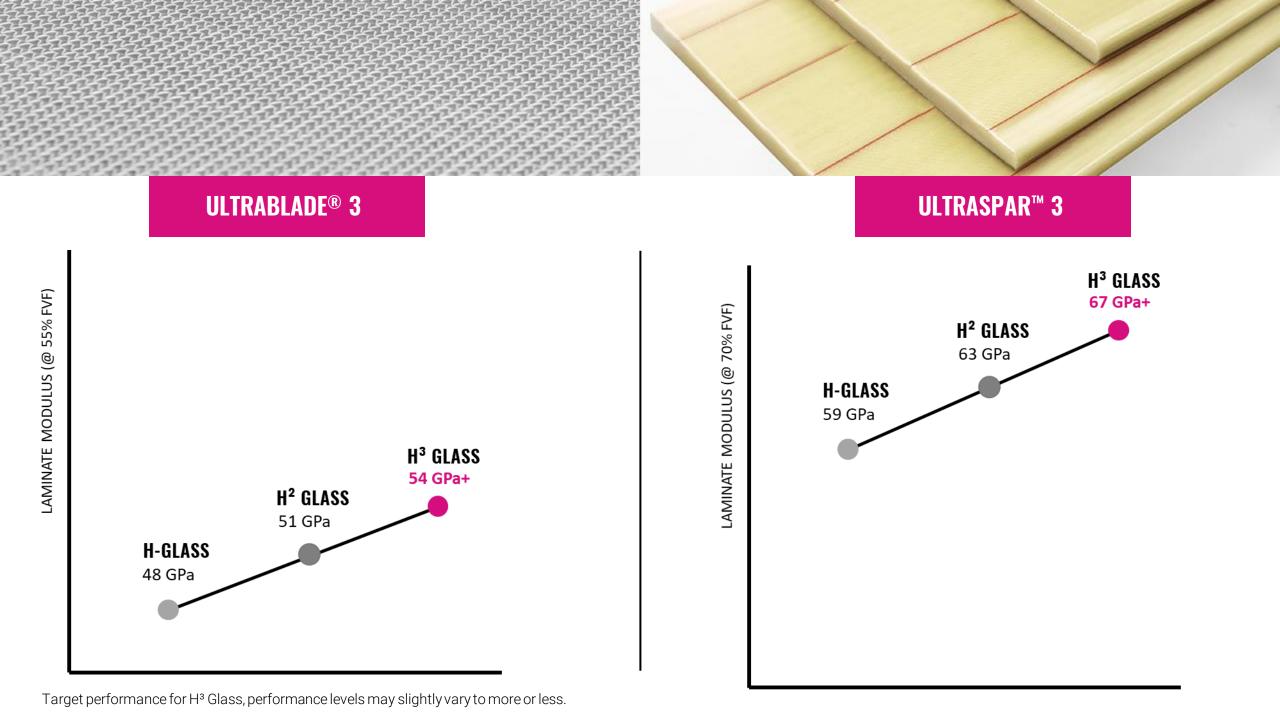
95 GPa+

(Sonic Glass Fiber Modulus)

90 GPa

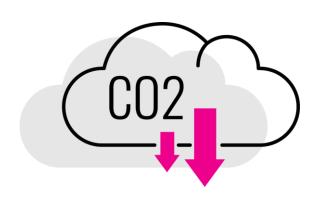
(ITS Modulus)

95 **GPa**


(ITS Modulus)

100 GPa+

(ITS Modulus)



Data verified by DNV-GL certified testing laboratory (H-Glass, H² Glass). H-Glass WINDSTRAND® 3000A properties valid in China. H-Glass properties vary outside of China dependent upon source: WINDSTRAND® 3000 (as above) or WINDSTRAND® 3000A (87 GPa – sonic glass fiber modulus). H³ Glass targeted performance stated above. Final product performance may vary based upon further development and customer requirements.

WE ARE MAKING A BETTER 2030, TODAY

Reduce greenhouse gas emissions from our operations by 50% (scope 1 & 2) and 30% (scope 3)

Send zero waste to landfill by cutting in half the amount of waste we generate and recycling the rest

Switch to 100% renewable electricity. Purchase electricity only from renewable

100% RENEWABLE ELECTRICITY

Owens Corning

~\$2 billion

of our roofing & insulation fiberglas™ products sales are 100% Wind Power certified ~60%

of our electricity source is renewable in the U.S alone

Owens Corning Wind

100%

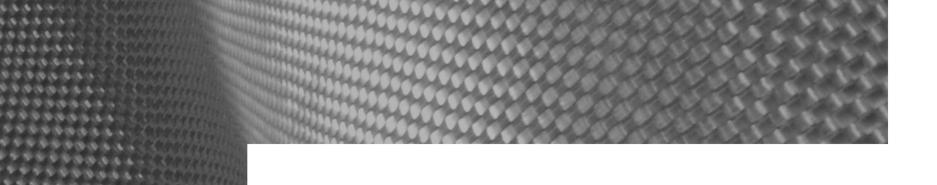
of our electricity source is renewable in Zele, Belgium (Plant & main wind lab) 100%

of our electricity source will be renewable in San Vicente, Spain in 2021 (Plant)

... and we are not done yet.

100% RECYCLABLE BLADE

In partnership with:



OWENS CORNING 8 HOW WE POWER NOW

